Mean Li-Yorke chaos in Banach spaces

被引:26
作者
Bernardes, N. C., Jr. [1 ]
Bonilla, A. [2 ]
Peris, A. [3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, Caixa Postal 68530, BR-21945970 Rio De Janeiro, RJ, Brazil
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
[3] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Edifici 8E,Acces F,4a Planta, E-46022 Valencia, Spain
基金
巴西圣保罗研究基金会;
关键词
Mean Li-Yorke chaos; Absolute Cesaro boundedness; Distributional chaos; Hypercyclic operators; DISTRIBUTIONAL CHAOS; OPERATORS; SEMIGROUPS;
D O I
10.1016/j.jfa.2019.108343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the notion of mean Li-Yorke chaos for operators on Banach spaces. We show that it differs from the notion of distributional chaos of type 2, contrary to what happens in the context of topological dynamics on compact metric spaces. We prove that an operator is mean Li-Yorke chaotic if and only if it has an absolutely mean irregular vector. As a consequence, absolutely Cesaro bounded operators are never mean Li-Yorke chaotic. Dense mean Li-Yorke chaos is shown to be equivalent to the existence of a dense (or residual) set of absolutely mean irregular vectors. As a consequence, every mean Li-Yorke chaotic operator is densely mean Li-Yorke chaotic on some infinite-dimensional closed invariant subspace. A (Dense) Mean Li-Yorke Chaos Criterion and a sufficient condition for the existence of a dense absolutely mean irregular manifold are also obtained. Moreover, we construct an example of an invertible hypercyclic operator T such that every nonzero vector is absolutely mean irregular for both T and T-1. Several other examples are also presented. Finally, mean Li-Yorke chaos is also investigated for C-0-semigroups of operators on Banach spaces. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 42 条
  • [1] DISTRIBUTIONAL CHAOS FOR STRONGLY CONTINUOUS SEMIGROUPS OF OPERATORS
    Albanese, Angela A.
    Barrachina, Xavier
    Mangino, Elisabetta M.
    Peris, Alfredo
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) : 2069 - 2082
  • [2] Linear dynamics of semigroups generated by differential operators
    Alberto Conejero, J.
    Lizama, Carlos
    Murillo-Arcila, Marina
    Peris, Alfredo
    [J]. OPEN MATHEMATICS, 2017, 15 : 745 - 767
  • [3] Devaney Chaos and Distributional Chaos in the Solution of Certain Partial Differential Equations
    Barrachina, Xavier
    Alberto Conejero, J.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [4] Distributionally chaotic translation semigroups
    Barrachina, Xavier
    Peris, Alfred
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) : 751 - 761
  • [5] Bayart F, 2009, CAMB TRACT MATH, P1, DOI 10.1017/CBO9780511581113
  • [6] Frequently hypercyclic operators
    Bayart, Frederic
    Grivaux, Sophie
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (11) : 5083 - 5117
  • [7] Difference sets and frequently hypercyclic weighted shifts
    Bayart, Frederic
    Ruzsa, Imre Z.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 691 - 709
  • [8] BELTRANMENEU MJ, 2014, THESIS
  • [9] Li-Yorke and distributionally chaotic operators
    Bermudez, T.
    Bonilla, A.
    Martinez-Gimenez, F.
    Peris, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) : 83 - 93
  • [10] Cesaro bounded operators in Banach spaces
    Bermudez, Teresa
    Bonilla, Antonio
    Muller, Vladimir
    Peris, Alfredo
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2020, 140 (01): : 187 - 206