EXTRAPOLATED IMPLICIT-EXPLICIT TIME STEPPING

被引:41
作者
Constantinescu, Emil M. [1 ]
Sandu, Adrian [2 ]
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[2] Virginia Polytech Inst & State Univ, Dept Comp Sci, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
extrapolation methods; implicit-explicit methods; stiff problems; differential algebraic systems; ordinary and partial differential equations; PARTIAL-DIFFERENTIAL-EQUATIONS; RUNGE-KUTTA METHODS; DIFFUSION-REACTION EQUATIONS; LINEAR MULTISTEP METHODS; ATMOSPHERIC CHEMISTRY; ALGEBRAIC SYSTEMS; ERROR; SCHEMES; EXPANSIONS; TRANSPORT;
D O I
10.1137/080732833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper constructs extrapolated implicit-explicit time stepping methods that allow one to efficiently solve problems with both stiff and nonstiff components. The proposed methods are based on Euler steps and can provide very high order discretizations of ODEs, index-1 DAEs, and PDEs in the method-of-lines framework. Implicit-explicit schemes based on extrapolation are simple to construct, easy to implement, and straightforward to parallelize. This work establishes the existence of perturbed asymptotic expansions of global errors, explains the convergence orders of these methods, and studies their linear stability properties. Numerical results with stiff ODE, DAE, and PDE test problems confirm the theoretical findings and illustrate the potential of these methods to solve multiphysics multiscale problems.
引用
收藏
页码:4452 / 4477
页数:26
相关论文
共 32 条
[1]  
[Anonymous], 1932, Proc. Edinb. Math. Soc.
[2]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[3]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[4]   ASYMPTOTIC ERROR EXPANSIONS FOR STIFF EQUATIONS - THE IMPLICIT EULER SCHEME [J].
AUZINGER, W ;
FRANK, R ;
MACSEK, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (01) :67-104
[6]  
BRENNER P, 1982, RAIRO-ANAL NUMER-NUM, V16, P5
[7]   THE THEORETICAL ACCURACY OF RUNGE-KUTTA TIME DISCRETIZATIONS FOR THE INITIAL-BOUNDARY VALUE-PROBLEM - STUDY OF THE BOUNDARY ERROR [J].
CARPENTER, MH ;
GOTTLIEB, D ;
ABARBANEL, S ;
DON, WS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (06) :1241-1252
[8]  
CONSTANTINESCU E, 2009, ANLMCSTM306
[9]   Modeling atmospheric chemistry and transport with dynamic adaptive resolution [J].
Constantinescu, Emil M. ;
Sandu, Adrian ;
Carmichael, Gregory R. .
COMPUTATIONAL GEOSCIENCES, 2008, 12 (02) :133-151
[10]   ONE-STEP AND EXTRAPOLATION METHODS FOR DIFFERENTIAL-ALGEBRAIC SYSTEMS [J].
DEUFLHARD, P ;
HAIRER, E ;
ZUGCK, J .
NUMERISCHE MATHEMATIK, 1987, 51 (05) :501-516