Recent Progress of High Thermal Conductivity of Low Temperature Curing Electronic Paste

被引:0
作者
Huang Yukuan [1 ]
Gan Guoyou [1 ]
Xu Shuntao [1 ]
Li Wenlin [2 ]
Li Junpeng [2 ]
机构
[1] Kunming Univ Sci & Technol, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Inst Precious Met, State Key Lab Adv Technol Comprehens Utilizat Pla, Kunming 650106, Yunnan, Peoples R China
关键词
electronic paste; silver nanoparticles; carbon nanotubes; thermal conductivity; SILVER NANOPARTICLES; INTERFACE MATERIAL; EPOXY ADHESIVE; ASPECT RATIO; NANOCOMPOSITES; STRENGTH; FILLERS; SIZE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electronic paste is an excellent thermal interface material (TIM), which is widely used in ultra-high speed computer chips, power semiconductor devices and LED, and it can achieve mechanical connection, electric connection and thermal connection between chip and heat sink by low temperature curing process, which can satisfy the application requirements and service conditions at high temperature. This paper reviewed the recent development of nano silver and carbon nanotubes application in low temperature curing electronic paste. Based on the influence on thermal conductivity structure of silver nanoparticles and carbon nanotubes, we separately presented: (1) the influence of the size of nano silver, surface coated agent and twins growth mode on the thermal conductivity in electronic paste; (2) the vertically aligned carbon nanotubes are prepared and the joint interface are modified and decorated, and TIM is prepared to form high thermal conduction path by connecting chip and heat sink; (3) the interface influence of silver nanoparticles decorated carbon nanotubes and the effect of silver powder to prepare three-dimensional composite thermal conductive structure by sintered bonding on enhancing the thermal conductivity of electronic paste. Finally, we expressed the expectation for nano silver and carbon nanotubes application in improving the thermal conductivity of the electronic paste in the future.
引用
收藏
页码:3394 / 3400
页数:7
相关论文
共 49 条
[1]  
Asoro M., 2010, Microsc. Microanal, V16, P1802, DOI [10.1017/S1431927610060812, DOI 10.1017/S1431927610060812]
[2]  
Barako M. T., 2015, J GEOPHYS RES-OCEANS, V120, P451
[3]   Thermal properties and percolation in carbon nanotube-polymer composites [J].
Bonnet, P. ;
Sireude, D. ;
Garnier, B. ;
Chauvet, O. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[4]   Thermal properties of epoxy resin based thermal interfacial materials by filling Ag nanoparticle-decorated graphene nanosheets [J].
Chen, Lifei ;
Zhao, Panfeng ;
Xie, Huaqing ;
Yu, Wei .
COMPOSITES SCIENCE AND TECHNOLOGY, 2016, 125 :17-21
[5]   Multi-walled carbon nanotube/silver nanoparticles used for thermal transportation [J].
Chen, Lifei ;
Xie, Huaqing ;
Yu, Wei .
JOURNAL OF MATERIALS SCIENCE, 2012, 47 (14) :5590-5595
[6]   Self-assembled block copolymer micelles with silver-carbon nanotube hybrid fillers for high performance thermal conduction [J].
Choi, Jae Ryung ;
Yu, Seunggun ;
Jung, Haejong ;
Hwang, Sun Kak ;
Kim, Richard Hahnkee ;
Song, Giyoung ;
Cho, Sung Hwan ;
Bae, Insung ;
Hong, Soon Man ;
Koo, Chong Min ;
Park, Cheolmin .
NANOSCALE, 2015, 7 (05) :1888-1895
[7]   Effect of aspect ratio on thermal conductivity of high density polyethylene/multi-walled carbon nanotubes nanocomposites [J].
Evgin, Tuba ;
Koca, Halil Dogacan ;
Horny, Nicolas ;
Turgut, Alpaslan ;
Tavman, Ismail Hakki ;
Chirtoc, Mihai ;
Omastova, Maria ;
Novak, Igor .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 82 :208-213
[8]  
Gao Hong, 2011, PREPARATION STRUCTUR
[9]   Heat Capacity, Thermal Conductivity, and Interface Resistance Extraction for Single-Walled Carbon Nanotube Films Using Frequency-Domain Thermoreflectance [J].
Gao, Yuan ;
Marconnet, Amy M. ;
Xiang, Rong ;
Maruyama, Shigeo ;
Goodson, Kenneth E. .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2013, 3 (09) :1524-1532
[10]   Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials [J].
Goyal, Vivek ;
Balandin, Alexander A. .
APPLIED PHYSICS LETTERS, 2012, 100 (07)