Analysis of Spatial and Spatiotemporal Anomalies Using Persistent Homology: Case Studies with COVID-19 Data

被引:3
|
作者
Hickok, Abigail [1 ]
Needell, Deanna [1 ]
Porter, Mason A. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Santa Fe Inst, Santa Fe, NM 87501 USA
来源
基金
美国国家科学基金会;
关键词
topological data analysis; persistent homology; spatiotemporal data; COVID-19; spatial data;
D O I
10.1137/21M1435033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a method for analyzing spatial and spatiotemporal anomalies in geospatial data using topological data analysis (TDA). To do this, we use persistent homology (PH), which allows one to algorithmically detect geometric voids in a data set and quantify the persistence of such voids. We construct an efficient filtered simplicial complex (FSC) such that the voids in our FSC are in one-to-one correspondence with the anomalies. Our approach goes beyond simply identifying anomalies; it also encodes information about the relationships between anomalies. We use vineyards, which one can interpret as time-varying persistence diagrams (which are an approach for visualizing PH), to track how the locations of the anomalies change with time. We conduct two case studies using spatially heterogeneous COVID-19 data. First, we examine vaccination rates in New York City by zip code at a single point in time. Second, we study a year-long data set of COVID-19 case rates in neighborhoods of the city of Los Angeles.
引用
收藏
页码:1116 / 1144
页数:29
相关论文
共 50 条
  • [1] Spatiotemporal Analysis of COVID-19 Incidence Data
    Spassiani, Ilaria
    Sebastiani, Giovanni
    Palu, Giorgio
    VIRUSES-BASEL, 2021, 13 (03):
  • [2] Spatiotemporal Analysis of Covid-19 in Turkey
    Aral, Nese
    Bakir, Hasan
    SUSTAINABLE CITIES AND SOCIETY, 2022, 76
  • [3] Nonlinear time series analysis of state-wise COVID-19 in Malaysia using wavelet and persistent homology
    Phang, Piau
    Ling, Carey Yu-Fan
    Liew, Siaw-Hong
    Razak, Fatimah Abdul
    Wiwatanapataphee, Benchawan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] COVID-19 spatiotemporal research with workflow-based data analysis
    Chintala, Srikar
    Dutta, Ritvik
    Tadmor, Doron
    INFECTION GENETICS AND EVOLUTION, 2021, 88
  • [5] Methods Used in the Spatial and Spatiotemporal Analysis of COVID-19 Epidemiology: A Systematic Review
    Nazia, Nushrat
    Butt, Zahid Ahmad
    Bedard, Melanie Lyn
    Tang, Wang-Choi
    Sehar, Hibah
    Law, Jane
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (14)
  • [6] Streamflow Data Analysis Using Persistent Homology
    Musa, S. M. S.
    Noorani, M. S. M.
    Razak, F. A.
    Ismail, M.
    Alias, M. A.
    2018 UKM FST POSTGRADUATE COLLOQUIUM, 2019, 2111
  • [8] Creation of a Spatiotemporal Algorithm and Application to COVID-19 Data
    Bou Sakr, Natalia
    Mansour, Gihane
    Salhi, Yahia
    COVID, 2024, 4 (08): : 1291 - 1314
  • [9] Spatiotemporal Dynamic of COVID-19 Diffusion in China: A Dynamic Spatial Autoregressive Model Analysis
    Yu, Hanchen
    Li, Jingwei
    Bardin, Sarah
    Gu, Hengyu
    Fan, Chenjing
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (08)
  • [10] Data-driven multiscale modelling and analysis of COVID-19 spatiotemporal evolution using explainable AI
    Chew, Alvin Wei Ze
    Zhang, Limao
    SUSTAINABLE CITIES AND SOCIETY, 2022, 80