Nuclei Classification in Histopathological Images via Local Phase Quantization and Convolutional Neural Network

被引:0
作者
Alah, Roaa Safi Abed [1 ]
Bilgin, Gokhan [1 ]
机构
[1] Yildiz Tech Univ, Dept Comp Engn, Davutpasa Campus, TR-34220 Istanbul, Turkey
来源
2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT) | 2019年
关键词
Histopathological images; deep learning; nuclei classification; convolutional neural network; local phase quantization;
D O I
10.1109/ebbt.2019.8742006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Classification of nuclei patterns in histopathological images has a significant interest in a wide range of biomedical research. In recent years, deep learning approaches have solved different issues and shown promising results in histopathological images. These developments have assisted researchers to distinguish different types of pathological nuclei samples without high labeling cost. In the normal routine, examination of histopathological slides under a microscope might be sensitive, slow and inaccurate due to subjective evaluations. In this study, we aim two different types of machine learning approaches for automatic nuclei classification in histopathological images on University of Warwick's colon data set with four nuclei types: Epithelial, inflammatory, fibroblast and other. The first approach was based on a convolutional neural network-based feature extraction with support vector machine-based classification. In the second approach, local phase quantization (LPQ) is applied along with support vector machine-based classification with data set augmentation. The obtained results achieved high accuracy rates on the classification of nuclei in histopathological images.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A Convolutional Neural Network for Soft Robot Images Classification
    Oguntosin, Victoria
    Akindele, Ayoola
    Uyi, Aiyudubie
    2020 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2020), 2020, : 110 - 114
  • [22] Flower Classification via Convolutional Neural Network
    Liu, Yuanyuan
    Tang, Fan
    Zhou, Dengwen
    Meng, Yiping
    Dong, Weiming
    2016 IEEE INTERNATIONAL CONFERENCE ON FUNCTIONAL-STRUCTURAL PLANT GROWTH MODELING, SIMULATION, VISUALIZATION AND APPLICATIONS (FSPMA), 2016, : 110 - 116
  • [23] On Application of Convolutional Neural Network for Classification of Plant Images
    Mokeev, Vladimir V.
    2018 GLOBAL SMART INDUSTRY CONFERENCE (GLOSIC), 2018,
  • [24] Convolutional Neural Network (CNN) for Gland Images Classification
    Haryanto, Toto
    Wasito, Ito
    Suhartanto, Heru
    PROCEEDINGS OF 2017 11TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEMS (ICTS), 2017, : 55 - 60
  • [25] Phalaenopsis growth phase classification using convolutional neural network
    Xiao, Kehui
    Zhou, Lei
    Yang, Hong
    Yang, Lei
    SMART AGRICULTURAL TECHNOLOGY, 2022, 2
  • [26] Classification of Optical Remote Sensing Images Based on Convolutional Neural Network
    Li, Yibo
    Liu, Mingjun
    Zhang, Senyue
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 801 - 806
  • [27] A self-learning deep neural network for classification of breast histopathological images
    Abdulaal, Alaa Hussein
    Valizadeh, Morteza
    Amirani, Mehdi Chehel
    Shah, A. F. M. Shahen
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
  • [28] Classification of Local SAR Features with Convolutional Neural Network
    Arisoy, Sertac
    Kayabol, Koray
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [29] Breast Cancer Histopathological Image Classification Utilizing Convolutional Neural Network
    Tuan Dinh Truong
    Hien Thi-Thu Pham
    7TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM (BME7): TRANSLATIONAL HEALTH SCIENCE AND TECHNOLOGY FOR DEVELOPING COUNTRIES, 2020, 69 : 531 - 536
  • [30] Nuclei Detection in Cytological Images Using Convolutional Neural Network and Ellipse Fitting Algorithm
    Kowal, Marek
    Zejmo, Michal
    Korbicz, Jozef
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2018), PT II, 2018, 10842 : 157 - 167