Global Image Registration Using Random Projection and Local Linear Method

被引:0
|
作者
Itoh, Hayato [1 ]
Sakai, Tomoya [2 ]
Kawamoto, Kazuhiko [3 ]
Imiya, Atsushi [4 ]
机构
[1] Chiba Univ, Grad Sch Adv Integrat Sci, Inage Ku, Yayoicho 1-33, Chiba 2638522, Japan
[2] Nagasaki Univ, Grad Sch Engn, Nagasaki 8528581, Japan
[3] Chiba Univ, Acad Link Ctr, Chiba 2638522, Japan
[4] Chiba Univ, Inst Management & Informat Technol, Chiba 2638522, Japan
来源
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PT I | 2013年 / 8047卷
基金
日本学术振兴会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this paper is twofold. First, we introduce fast global image registration using random projection. By generating many transformed images as entries in a dictionary from a reference image, nearest-neighbour-search (NNS)-based image registration computes the transformation that establishes the best match among the generated transformations. For the reduction in the computational cost for NNS without a significant loss of accuracy, we use random projection. Furthermore, for the reduction in the computational complexity of random projection, we use the spectrum-spreading technique and circular convolution. Second, for the reduction in the space complexity of the dictionary, we introduce an interpolation technique into the dictionary using the linear subspace method and a local linear property of the pattern space.
引用
收藏
页码:564 / 571
页数:8
相关论文
共 50 条
  • [31] Using the Local Phase of the Magnitude of the Local Structure Tensor for Image Registration
    Eklund, Anders
    Forsberg, Daniel
    Andersson, Mats
    Knutsson, Hans
    IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 : 414 - 423
  • [32] Visualization of Deformable Image Registration Quality Using Local Image Dissimilarity
    Schlachter, Matthias
    Fechter, Tobias
    Jurisic, Miro
    Schimek-Jasch, Tanja
    Oehlke, Oliver
    Adebahr, Sonja
    Birkfellner, Wolfgang
    Nestle, Ursula
    Buehler, Katja
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (10) : 2319 - 2328
  • [33] A Novel Method of Cone Beam CT Projection Binning Based on Image Registration
    Park, Seonyeong
    Kim, Siyong
    Yi, Byongyong
    Hugo, Geoffrey
    Gach, H. Michael
    Motai, Yuichi
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (08) : 1733 - 1745
  • [34] Novel Image Registration Method Based on Local Structure Constraints
    Li, Aixia
    Cheng, Xiaojun
    Guan, Haiyan
    Feng, Tiantian
    Guan, Zequn
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (09) : 1584 - 1588
  • [35] Image registration algorithm based on sparse random projection and scale-invariant feature transform
    Yang, Sa
    Yang, Chunling
    Guangxue Xuebao/Acta Optica Sinica, 2014, 34 (11):
  • [36] Image Registration Method based on Local High Order Approach
    Wu, Yannan
    Au, Oscar C.
    Luo, Enming
    Yeung, Chi-Ho
    Tu, Shing-Fat
    ISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5, 2009, : 746 - 749
  • [37] Noise stable image registration using Random Resample Consensus
    Nakazawa, Atsushi
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 853 - 858
  • [38] A METHOD FOR FACE RECOGNITION USING IMAGE REGISTRATION
    Gillan, Steven
    Agathoklis, Panajotis
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2011, 20 (07) : 1419 - 1439
  • [39] An Efficient Method of Improving Image Retrieval Using Combined Global and Local Features
    Khatabi, Abderrahim
    Tmiri, Amal
    Serhir, Ahmed
    ADVANCES IN UBIQUITOUS NETWORKING 2, 2017, 397 : 431 - 443
  • [40] A method for cell image segmentation using both local and global threshold techniques
    Li, Yuexiang
    Cho, Siu-Yeung
    MIPPR 2013: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION AND MEDICAL IMAGING PROCESSING, 2013, 8920