Bayesian homodyne and heterodyne tomography

被引:7
作者
Chapman, Joseph C. [1 ]
Lukens, Joseph M. [1 ]
Qi, Bing [1 ,2 ]
Pooser, Raphael C. [1 ]
Peters, Nicholas A. [1 ]
机构
[1] Oak Ridge Natl Lab, Quantum Informat Sci Sect, POB 2009, Oak Ridge, TN 37831 USA
[2] Cisco Syst Inc, San Jose, CA 95134 USA
关键词
STATE TOMOGRAPHY; DENSITY-MATRIX; QUANTUM;
D O I
10.1364/OE.456597
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Continuous-variable (CV) photonic states are of increasing interest in quantum information science, bolstered by features such as deterministic resource state generation and error correction via bosonic codes. Data-efficient characterization methods will prove critical in the fine-tuning and maturation of such CV quantum technology. Although Bayesian inference offers appealing properties-including uncertainty quantification and optimality in mean-squared error-Bayesian methods have yet to be demonstrated for the tomography of arbitrary CV states. Here we introduce a complete Bayesian quantum state tomography workflow capable of inferring generic CV states measured by homodyne or heterodyne detection, with no assumption of Gaussianity. As examples, we demonstrate our approach on experimental coherent, thermal, and cat state data, obtaining excellent agreement between our Bayesian estimates and theoretical predictions. Our approach lays the groundwork for Bayesian estimation of highly complex CV quantum states in emerging quantum photonic platforms, such as quantum communications networks and sensors. (C) 2022 Optics Publishing Group under the terms of the Optics Open Access Publishing Agreement
引用
收藏
页码:15184 / 15200
页数:17
相关论文
共 50 条
[31]   Homodyne estimation of quantum state purity by exploiting the covariant uncertainty relation [J].
Man'ko, V. I. ;
Marmo, G. ;
Porzio, A. ;
Solimeno, S. ;
Ventriglia, F. .
PHYSICA SCRIPTA, 2011, 83 (04)
[32]   Steering-based randomness certification with squeezed states and homodyne measurements [J].
Ioannou, Marie ;
Longstaff, Bradley ;
Larsen, Mikkel, V ;
Neergaard-Nielsen, Jonas S. ;
Andersen, Ulrik L. ;
Cavalcanti, Daniel ;
Brunner, Nicolas ;
Brask, Jonatan Bohr .
PHYSICAL REVIEW A, 2022, 106 (04)
[33]   Synthetic gauge fields and homodyne transmission in Jaynes-Cummings lattices [J].
Nunnenkamp, A. ;
Koch, Jens ;
Girvin, S. M. .
NEW JOURNAL OF PHYSICS, 2011, 13
[34]   20 MHz resonant photodetector for the homodyne measurement of picosecond pulsed squeezed light [J].
LI, Zhihao ;
Liu, Jun ;
Guo, Fengjuan ;
Zhao, Lujie ;
Qin, Zhongzhong ;
Ma, Rong .
OPTICS CONTINUUM, 2023, 2 (02) :490-497
[35]   A Possible Experimental Check of the Uncertainty Relations by Means of Homodyne Measuring Field Quadrature [J].
Man'ko, V. I. ;
Marmo, G. ;
Simoni, A. ;
Ventriglia, F. .
ADVANCED SCIENCE LETTERS, 2009, 2 (04) :517-520
[36]   Balanced homodyne detection with on-off detector systems: Observable nonclassicality criteria [J].
Sperling, J. ;
Vogel, W. ;
Agarwal, G. S. .
EPL, 2015, 109 (03)
[37]   Reconstructing Gaussian bipartite states with a single polarization-sensitive homodyne detector [J].
Junker, Jonas ;
Wilken, Dennis ;
Steinmeyer, Daniel ;
Heurs, Michele .
OPTICS EXPRESS, 2022, 30 (19) :33860-33868
[38]   Measurement of the wavefunction for a biphoton state with homodyne detection using least squares estimation [J].
Han, Yashuai ;
Wu, Daohua ;
Kasai, Katsuyuki ;
Wang, Lirong ;
Watanabe, Masayoshi ;
Zhang, Yun .
JOURNAL OF OPTICS, 2020, 22 (02)
[39]   Violations of Bell's inequality for Gaussian states with homodyne detection and nonlinear interactions [J].
Paternostro, M. ;
Jeong, H. ;
Ralph, T. C. .
PHYSICAL REVIEW A, 2009, 79 (01)
[40]   Reconstruction of photon number conditioned states using phase randomized homodyne measurements [J].
Chrzanowski, H. M. ;
Assad, S. M. ;
Bernu, J. ;
Hage, B. ;
Lund, A. P. ;
Ralph, T. C. ;
Lam, P. K. ;
Symul, T. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (10)