Bayesian homodyne and heterodyne tomography

被引:7
|
作者
Chapman, Joseph C. [1 ]
Lukens, Joseph M. [1 ]
Qi, Bing [1 ,2 ]
Pooser, Raphael C. [1 ]
Peters, Nicholas A. [1 ]
机构
[1] Oak Ridge Natl Lab, Quantum Informat Sci Sect, POB 2009, Oak Ridge, TN 37831 USA
[2] Cisco Syst Inc, San Jose, CA 95134 USA
关键词
STATE TOMOGRAPHY; DENSITY-MATRIX; QUANTUM;
D O I
10.1364/OE.456597
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Continuous-variable (CV) photonic states are of increasing interest in quantum information science, bolstered by features such as deterministic resource state generation and error correction via bosonic codes. Data-efficient characterization methods will prove critical in the fine-tuning and maturation of such CV quantum technology. Although Bayesian inference offers appealing properties-including uncertainty quantification and optimality in mean-squared error-Bayesian methods have yet to be demonstrated for the tomography of arbitrary CV states. Here we introduce a complete Bayesian quantum state tomography workflow capable of inferring generic CV states measured by homodyne or heterodyne detection, with no assumption of Gaussianity. As examples, we demonstrate our approach on experimental coherent, thermal, and cat state data, obtaining excellent agreement between our Bayesian estimates and theoretical predictions. Our approach lays the groundwork for Bayesian estimation of highly complex CV quantum states in emerging quantum photonic platforms, such as quantum communications networks and sensors. (C) 2022 Optics Publishing Group under the terms of the Optics Open Access Publishing Agreement
引用
收藏
页码:15184 / 15200
页数:17
相关论文
共 50 条
  • [1] Finite number of measurements in optical homodyne tomography
    Torma, P
    JOURNAL OF MODERN OPTICS, 1996, 43 (12) : 2437 - 2447
  • [2] MODEL SELECTION FOR QUANTUM HOMODYNE TOMOGRAPHY
    Kahn, Jonas
    ESAIM-PROBABILITY AND STATISTICS, 2009, 13 : 363 - 399
  • [3] Experimental quantum tomography of a homodyne detector
    Grandi, Samuele
    Zavatta, Alessandro
    Bellini, Marco
    Paris, Matteo G. A.
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [4] Multichannel homodyne detection for quantum optical tomography
    Roumpos, Georgios
    Cundiff, Steven T.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (05) : 1303 - 1316
  • [5] DENSITY MATRIX ESTIMATION IN QUANTUM HOMODYNE TOMOGRAPHY
    Wang, Yazhen
    Xu, Chenliang
    STATISTICA SINICA, 2015, 25 (03) : 953 - 973
  • [6] High-dimensional methods for quantum homodyne tomography
    Mosco, Nicola
    Maccone, Lorenzo
    PHYSICS LETTERS A, 2022, 449
  • [7] State estimation in quantum homodyne tomography with noisy data
    Aubry, Jean-Marie
    Butucea, Cristina
    Meziani, Katia
    INVERSE PROBLEMS, 2009, 25 (01)
  • [8] Pulsed homodyne Gaussian quantum tomography with low detection efficiency
    Esposito, M.
    Benatti, F.
    Floreanini, R.
    Olivares, S.
    Randi, F.
    Titimbo, K.
    Pividori, M.
    Novelli, F.
    Cilento, F.
    Parmigiani, F.
    Fausti, D.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [9] Practical Bayesian tomography
    Granade, Christopher
    Combes, Joshua
    Cory, D. G.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [10] Nonparametric goodness-of fit testing in quantum homodyne tomography with noisy data
    Meziani, Katia
    ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 1195 - 1223