A HIERARCHICAL BAYESIAN MODEL FOR SINGLE-CELL CLUSTERING USING RNA-SEQUENCING DATA

被引:0
|
作者
Liu, Yiyi [1 ]
Warren, Joshua L. [1 ]
Zhao, Hongyu [1 ]
机构
[1] Yale Univ, Dept Biostat, Sch Publ Hlth, New Haven, CT 06520 USA
关键词
Bayesian hierarchical model; clustering; Dirichlet process; Gaussian mixture model; missing data; single-cell RNA-sequencing; TRANSCRIPTOMES; HETEROGENEITY; VISUALIZATION; CHALLENGES;
D O I
10.1214/19-AOAS1250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Understanding the heterogeneity of cells is an important biological question. The development of single-cell RNA-sequencing (scRNA-seq) technology provides high resolution data for such inquiry. A key challenge in scRNA-seq analysis is the high variability of measured RNA expression levels and frequent dropouts (missing values) due to limited input RNA compared to bulk RNA-seq measurement. Existing clustering methods do not perform well for these noisy and zero-inflated scRNA-seq data. In this manuscript we propose a Bayesian hierarchical model, called BasClu, to appropriately characterize important features of scRNA-seq data in order to more accurately cluster cells. We demonstrate the effectiveness of our method with extensive simulation studies and applications to three real scRNA-seq datasets.
引用
收藏
页码:1733 / 1752
页数:20
相关论文
共 50 条
  • [31] A systematic evaluation of single-cell RNA-sequencing imputation methods
    Wenpin Hou
    Zhicheng Ji
    Hongkai Ji
    Stephanie C. Hicks
    Genome Biology, 21
  • [32] A systematic evaluation of single-cell RNA-sequencing imputation methods
    Hou, Wenpin
    Ji, Zhicheng
    Ji, Hongkai
    Hicks, Stephanie C.
    GENOME BIOLOGY, 2020, 21 (01)
  • [33] Single-Cell RNA-Sequencing in Astrocyte Development, Heterogeneity, and Disease
    Meng-Yuan Gao
    Jia-Qi Wang
    Jin He
    Rui Gao
    Yuan Zhang
    Xing Li
    Cellular and Molecular Neurobiology, 2023, 43 : 3449 - 3464
  • [34] Single-Cell RNA-Sequencing Reveals the Breadth of Osteoblast Heterogeneity
    Yoshioka, Hirotaka
    Okita, Saki
    Nakano, Masashi
    Minamizaki, Tomoko
    Nubukiyo, Asako
    Sotomaru, Yusuke
    Bonnelye, Edith
    Kozai, Katsuyuki
    Tanimoto, Kotaro
    Aubin, Jane E.
    Yoshiko, Yuji
    JBMR PLUS, 2021, 5 (06)
  • [35] Single-cell RNA-sequencing: The future of genome biology is now
    Picelli, Simone
    RNA BIOLOGY, 2017, 14 (05) : 637 - 650
  • [36] A Bayesian method to cluster single-cell RNA sequencing data using copy number alterations
    Milite, Salvatore
    Bergamin, Riccardo
    Patruno, Lucrezia
    Calonaci, Nicola
    Caravagna, Giulio
    BIOINFORMATICS, 2022, 38 (09) : 2512 - 2518
  • [37] scShapes: a statistical framework for identifying distribution shapes in single-cell RNA-sequencing data
    Dharmaratne, Malindrie
    Kulkarni, Ameya S.
    Fard, Atefeh Taherian
    Mar, Jessica C.
    GIGASCIENCE, 2023, 12
  • [38] Dissect the Heterogeneity of BFU-Es through Single-cell RNA-sequencing Data
    孙莉莉
    徐长禄
    科技经济导刊, 2018, (28) : 154 - 155
  • [39] scQCEA: a framework for annotation and quality control report of single-cell RNA-sequencing data
    Isar Nassiri
    Benjamin Fairfax
    Angela Lee
    Yanxia Wu
    David Buck
    Paolo Piazza
    BMC Genomics, 24
  • [40] Artificial Intelligence in Bulk and Single-Cell RNA-Sequencing Data to Foster Precision Oncology
    Del Giudice, Marco
    Peirone, Serena
    Perrone, Sarah
    Priante, Francesca
    Varese, Fabiola
    Tirtei, Elisa
    Fagioli, Franca
    Cereda, Matteo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (09)