A HIERARCHICAL BAYESIAN MODEL FOR SINGLE-CELL CLUSTERING USING RNA-SEQUENCING DATA

被引:0
|
作者
Liu, Yiyi [1 ]
Warren, Joshua L. [1 ]
Zhao, Hongyu [1 ]
机构
[1] Yale Univ, Dept Biostat, Sch Publ Hlth, New Haven, CT 06520 USA
来源
ANNALS OF APPLIED STATISTICS | 2019年 / 13卷 / 03期
关键词
Bayesian hierarchical model; clustering; Dirichlet process; Gaussian mixture model; missing data; single-cell RNA-sequencing; TRANSCRIPTOMES; HETEROGENEITY; VISUALIZATION; CHALLENGES;
D O I
10.1214/19-AOAS1250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Understanding the heterogeneity of cells is an important biological question. The development of single-cell RNA-sequencing (scRNA-seq) technology provides high resolution data for such inquiry. A key challenge in scRNA-seq analysis is the high variability of measured RNA expression levels and frequent dropouts (missing values) due to limited input RNA compared to bulk RNA-seq measurement. Existing clustering methods do not perform well for these noisy and zero-inflated scRNA-seq data. In this manuscript we propose a Bayesian hierarchical model, called BasClu, to appropriately characterize important features of scRNA-seq data in order to more accurately cluster cells. We demonstrate the effectiveness of our method with extensive simulation studies and applications to three real scRNA-seq datasets.
引用
收藏
页码:1733 / 1752
页数:20
相关论文
共 50 条
  • [31] Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression
    Nassiri, Isar
    Kwok, Andrew J.
    Bhandari, Aneesha
    Bull, Katherine R.
    Garner, Lucy C.
    Klenerman, Paul
    Webber, Caleb
    Parkkinen, Laura
    Lee, Angela W.
    Wu, Yanxia
    Fairfax, Benjamin
    Knight, Julian C.
    Buck, David
    Piazza, Paolo
    BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [32] jS']jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data
    Wu, Wenming
    Liu, Zaiyi
    Ma, Xiaoke
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [33] Improved deconvolution of combined bulk and single-cell RNA-sequencing data
    Lei, Haoyun
    Guo, Xiaoyan A.
    Tao, Yifeng
    Ding, Kai
    Fu, Xuecong
    Oesterreich, Steffi
    Lee, Adrian V.
    Schwartz, Russell
    CANCER RESEARCH, 2022, 82 (12)
  • [34] Comparison of Computational Methods for Imputing Single-Cell RNA-Sequencing Data
    Zhang, Lihua
    Zhang, Shihua
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (02) : 376 - 389
  • [35] Missing data and technical variability in single-cell RNA-sequencing experiments
    Hicks, Stephanie C.
    Townes, F. William
    Teng, Mingxiang
    Irizarry, Rafael A.
    BIOSTATISTICS, 2018, 19 (04) : 562 - 578
  • [36] RESCUE: imputing dropout events in single-cell RNA-sequencing data
    Tracy, Sam
    Yuan, Guo-Cheng
    Dries, Ruben
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [37] RESCUE: imputing dropout events in single-cell RNA-sequencing data
    Sam Tracy
    Guo-Cheng Yuan
    Ruben Dries
    BMC Bioinformatics, 20
  • [38] DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data
    DePasquale, Erica A. K.
    Schnell, Daniel J.
    Van Camp, Pieter-Jan
    Valiente-Alandi, Inigo
    Blaxall, Burns C.
    Grimes, H. Leighton
    Singh, Harinder
    Salomonis, Nathan
    CELL REPORTS, 2019, 29 (06): : 1718 - +
  • [39] Evaluating the Performance of the Generalized Linear Model (glm) R Package Using Single-Cell RNA-Sequencing Data
    Alaqeeli, Omar
    Alturki, Raad
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [40] Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma
    Huang, Ruichao
    Wang, Xiaohu
    Yin, Xiangyun
    Zhou, Yaqi
    Sun, Jiansheng
    Yin, Zhongxiu
    Zhu, Zhi
    FRONTIERS IN GENETICS, 2022, 13