A HIERARCHICAL BAYESIAN MODEL FOR SINGLE-CELL CLUSTERING USING RNA-SEQUENCING DATA

被引:0
|
作者
Liu, Yiyi [1 ]
Warren, Joshua L. [1 ]
Zhao, Hongyu [1 ]
机构
[1] Yale Univ, Dept Biostat, Sch Publ Hlth, New Haven, CT 06520 USA
来源
ANNALS OF APPLIED STATISTICS | 2019年 / 13卷 / 03期
关键词
Bayesian hierarchical model; clustering; Dirichlet process; Gaussian mixture model; missing data; single-cell RNA-sequencing; TRANSCRIPTOMES; HETEROGENEITY; VISUALIZATION; CHALLENGES;
D O I
10.1214/19-AOAS1250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Understanding the heterogeneity of cells is an important biological question. The development of single-cell RNA-sequencing (scRNA-seq) technology provides high resolution data for such inquiry. A key challenge in scRNA-seq analysis is the high variability of measured RNA expression levels and frequent dropouts (missing values) due to limited input RNA compared to bulk RNA-seq measurement. Existing clustering methods do not perform well for these noisy and zero-inflated scRNA-seq data. In this manuscript we propose a Bayesian hierarchical model, called BasClu, to appropriately characterize important features of scRNA-seq data in order to more accurately cluster cells. We demonstrate the effectiveness of our method with extensive simulation studies and applications to three real scRNA-seq datasets.
引用
收藏
页码:1733 / 1752
页数:20
相关论文
共 50 条
  • [21] One-step spectral clustering of weighted variables on single-cell RNA-sequencing data
    Park, Min Young
    Park, Seyoung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2020, 33 (04) : 511 - 526
  • [22] Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data
    Lijia Yu
    Yue Cao
    Jean Y. H. Yang
    Pengyi Yang
    Genome Biology, 23
  • [23] Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data
    Yu, Lijia
    Cao, Yue
    Yang, Jean Y. H.
    Yang, Pengyi
    GENOME BIOLOGY, 2022, 23 (01)
  • [24] Single-Cell RNA-Sequencing Data Clustering via Locality Preserving Kernel Matrix Alignment
    Zheng, Xiao
    Chen, Jiajia
    Tang, Chang
    Zhou, Suqin
    IEEE ACCESS, 2020, 8 : 201577 - 201594
  • [25] Single-cell RNA-sequencing in asthma research
    Tang, Weifeng
    Li, Mihui
    Teng, Fangzhou
    Cui, Jie
    Dong, Jingcheng
    Wang, Wenqian
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [26] Single-cell isolation by a modular single-cell pipette for RNA-sequencing
    Zhang, Kai
    Gao, Min
    Chong, Zechen
    Li, Ying
    Han, Xin
    Chen, Rui
    Qin, Lidong
    LAB ON A CHIP, 2016, 16 (24) : 4742 - 4748
  • [27] A sparse differential clustering algorithm for tracing cell type changes via single-cell RNA-sequencing data
    Barron, Martin
    Zhang, Siyuan
    Li, Jun
    NUCLEIC ACIDS RESEARCH, 2018, 46 (03)
  • [28] A comprehensive human embryo reference tool using single-cell RNA-sequencing data
    Zhao, Cheng
    Reyes, Alvaro Plaza
    Schell, John Paul
    Weltner, Jere
    Ortega, Nicolas M.
    Zheng, Yi
    Bjorklund, Asa K.
    Baque-vidal, Laura
    Sokka, Joonas
    Torokovic, Ras
    Cox, Brian
    Rossant, Janet
    Fu, Jianping
    Petropoulos, Sophie
    Lanner, Fredrik
    NATURE METHODS, 2025, 22 (01) : 193 - 206
  • [29] Cell type matching in single-cell RNA-sequencing data using FR-Match
    Zhang, Yun
    Aevermann, Brian
    Gala, Rohan
    Scheuermann, Richard H.
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [30] Cell type matching in single-cell RNA-sequencing data using FR-Match
    Yun Zhang
    Brian Aevermann
    Rohan Gala
    Richard H. Scheuermann
    Scientific Reports, 12 (1)