The Lifespan of Small Data Solutions in Two Dimensional Capillary Water Waves

被引:60
作者
Ifrim, Mihaela [1 ]
Tataru, Daniel [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
CONDITIONAL ENERGETIC STABILITY; NONLINEAR SCHRODINGER-EQUATION; KLEIN-GORDON EQUATIONS; SURFACE-TENSION; WELL-POSEDNESS; GLOBAL-SOLUTIONS; SOBOLEV SPACES; IDEAL FLUID; EXISTENCE; MOTION;
D O I
10.1007/s00205-017-1126-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the incompressible, irrotational infinite depth water wave equation in two space dimensions, without gravity but with surface tension. We consider this problem expressed in position-velocity potential holomorphic coordinates, and prove that small data solutions have at least cubic lifespan while small localized data leads to global solutions.
引用
收藏
页码:1279 / 1346
页数:68
相关论文
共 48 条
[1]   ON THE WATER-WAVE EQUATIONS WITH SURFACE TENSION [J].
Alazard, T. ;
Burq, N. ;
Zuily, C. .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (03) :413-499
[2]  
Alazard T., 2014, ARXIV E PRINTS
[3]  
Alazard T, 2015, ANN SCI ECOLE NORM S, V48, P1149
[4]  
Alazard T, 2015, ASTERISQUE, P1
[5]   STRICHARTZ ESTIMATES FOR WATER WAVES [J].
Alazard, Thomas ;
Burq, Nicolas ;
Zuily, Claude .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2011, 44 (05) :855-903
[6]   The zero surface tension limit of two-dimensional water waves [J].
Ambrose, DM ;
Masmoudi, N .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1287-1315
[7]  
AMICK CJ, 1989, ARCH RATION MECH AN, V105, P1
[8]  
Beyer K, 1998, MATH METHOD APPL SCI, V21, P1149, DOI 10.1002/(SICI)1099-1476(199808)21:12<1149::AID-MMA990>3.0.CO
[9]  
2-C
[10]   Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves [J].
Buffoni, B. ;
Groves, M. D. ;
Sun, S. M. ;
Wahlen, E. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) :1006-1096