An Iterative Sum-of-Squares Optimization for Static Output Feedback of Polynomial Systems

被引:0
作者
Baldi, Simone [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
来源
2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC) | 2016年
关键词
NONLINEAR-SYSTEMS; ILMI APPROACH; STABILIZATION; CONTROLLER; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes an iterative procedure for static output feedback of polynomial systems based on Sum-of Squares optimization. Necessary and sufficient conditions for static output feedback stabilization of polynomial systems are formulated, both for the global and for the local stabilization case. Since the proposed conditions are bilinear with respect to the decision variables, an iterative procedure is proposed for the solution of the stabilization problem. Every iteration is shown to improve the performance with respect to the previous one, even if convergence to a local minimum might occur. Since polynomial Lyapunov functions and control laws are considered, a Sum-of-Squares optimization approach is adopted. A numerical example illustrates the results.
引用
收藏
页码:3892 / 3897
页数:6
相关论文
共 22 条
  • [1] A Hamilton-Jacobi setup for the static output feedback stabilization of nonlinear systems
    Astolfi, A
    Colaneri, P
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (12) : 2038 - 2041
  • [2] Blekherman G., 2010, ARXIV09071339
  • [3] Static output feedback stabilization: An ILMI approach
    Cao, YY
    Lam, J
    Sun, YX
    [J]. AUTOMATICA, 1998, 34 (12) : 1641 - 1645
  • [4] Static output feedback stabilization for nonlinear interval time-delay systems via fuzzy control approach
    Chang, YC
    Chen, SS
    Su, SF
    Lee, TT
    [J]. FUZZY SETS AND SYSTEMS, 2004, 148 (03) : 395 - 410
  • [5] A cone complementarity linearization algorithm for static output-feedback and related problems
    ElGhaoui, L
    Oustry, F
    AitRami, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) : 1171 - 1176
  • [6] Static output feedback controllers: Stability and convexity
    Geromel, JC
    de Souza, CC
    Skelton, RE
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (01) : 120 - 125
  • [7] Henrion D, 2005, Positive polynomials in control
  • [8] Robust Η∞ static output feedback control of fuzzy systems:: An ILMI approach
    Huang, D
    Nguang, SK
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (01): : 216 - 222
  • [9] Khalil H., 2002, NONLINEAR SYSTEMS, V3
  • [10] A NECESSARY AND SUFFICIENT CONDITION FOR OUTPUT-FEEDBACK STABILIZABILITY
    KUCERA, V
    DESOUZA, CE
    [J]. AUTOMATICA, 1995, 31 (09) : 1357 - 1359