New periodic solutions to a generalized Hirota-Satsuma coupled KdV system

被引:0
作者
Yan, QY [1 ]
Zhang, YF
Wei, XP
机构
[1] Dalian Univ, Ctr Adv Design Technol, Dalian 116622, Peoples R China
[2] Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100080, Peoples R China
[4] Shanghai Univ Sci & Technol, Sch Informat Sci & Engn, Tai An 271019, Peoples R China
来源
CHINESE PHYSICS | 2003年 / 12卷 / 02期
关键词
periodic solution; Hirota-Satsuma coupled KdV system; Jacobi elliptic function;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using expansions in terms of the Jacobi elliptic cosine function and third Jacobi elliptic function, some new periodic solutions to the generalized Hirota-Satsuma coupled KdV system are obtained with the help of the algorithm Mathematica. These periodic solutions are also reduced to the bell-shaped solitary wave solutions and kink-shape solitary solutions. As special cases, we obtain new periodic solution, bell-shaped and kink-shaped solitary solutions to the well-known Hirota-Satsuma equations.
引用
收藏
页码:131 / 135
页数:5
相关论文
共 12 条
[1]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[2]   Double periodic solutions with Jacobi elliptic functions for two generalized Hirota-Satsuma coupled KdV systems [J].
Fan, EG ;
Hon, BYC .
PHYSICS LETTERS A, 2002, 292 (06) :335-337
[3]   Note on solving solitary wave solution by the hyperbolic function method [J].
Guo, GP ;
Zhang, JF .
ACTA PHYSICA SINICA, 2002, 51 (06) :1159-1162
[4]   The envelope periodic solutions to nonlinear wave equations with Jacobi elliptic function [J].
Liu, SD ;
Fu, ZT ;
Liu, SK ;
Zhao, Q .
ACTA PHYSICA SINICA, 2002, 51 (04) :718-722
[5]   Jacobi elliptic function expansion solution to the variable coefficient nonlinear equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2002, 51 (09) :1923-1926
[6]   New periodic solutions to a kind of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2002, 51 (01) :10-14
[7]  
Wang ML., 1999, J. Lanzhou Univ. Nat. Sci, V35, P8
[8]   New explicit and exact travelling wave solutions for a compound KdV-Burgers equation [J].
Xia, TC ;
Zhang, HQ ;
Yan, ZY .
CHINESE PHYSICS, 2001, 10 (08) :694-697
[9]   Solitary wave solutions of a nonlinear evolution equation using mixed exponential method [J].
Xu, GQ ;
Li, ZB .
ACTA PHYSICA SINICA, 2002, 51 (05) :946-950
[10]  
ZHANG JD, 1998, ACTA PHYS SINICA, V47, P1057