PROPAGATION PHENOMENA FOR A CRISS-CROSS INFECTION MODEL WITH NON-DIFFUSIVE SUSCEPTIBLE POPULATION IN PERIODIC MEDIA

被引:0
作者
Deng, Liangliang [1 ]
Wang, Zhi-Cheng [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2021年 / 26卷 / 09期
关键词
Criss-cross infection; pulsating travelling waves; spreading speeds; eigenvalue problems; basic reproduction ratio; uniform persistence; FRAGMENTED ENVIRONMENT MODEL; REACTION-DIFFUSION SYSTEM; TRAVELING-WAVES; FRONT PROPAGATION; SPREADING SPEEDS; EPIDEMIC MODEL; CONVERGENCE;
D O I
10.3934/dcdsb.2020313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with propagation phenomena for an epidemic model describing the circulation of a disease within two populations or two subgroups in periodic media, where the susceptible individuals are assumed to be motionless. The spatial dynamics for the cooperative system obtained by a classical transformation are investigated, including spatially periodic steady state, spreading speeds and pulsating travelling fronts. It is proved that the minimal wave speed is linearly determined and given by a variational formula involving linear eigenvalue problem. Further, we prove that the existence and non-existence of travelling wave solutions of the model are entirely determined by the basic reproduction ratio R-0. As an application, we prove that if the localized amount of infectious individuals are introduced at the beginning, then the solution of such a system has an asymptotic spreading speed in large time and that is exactly coincident with the minimal wave speed.
引用
收藏
页码:4789 / 4814
页数:26
相关论文
共 49 条
[1]   SPREADING SPEEDS OF RABIES WITH TERRITORIAL AND DIFFUSING RABID FOXES [J].
Alanazi, Khalaf M. ;
Jackiewicz, Zdzislaw ;
Thieme, Horst R. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (06) :2143-2183
[2]  
Allen LJS, 2008, DISCRETE CONT DYN-A, V21, P1
[3]   Generalized traveling waves for time-dependent reaction-diffusion systems [J].
Ambrosio, Benjamin ;
Ducrot, Arnaud ;
Ruan, Shigui .
MATHEMATISCHE ANNALEN, 2021, 381 (1-2) :1-27
[4]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[5]   PROPAGATION OF SALMONELLA WITHIN AN INDUSTRIAL HEN HOUSE [J].
Beaumont, C. ;
Burie, J-B ;
Ducrot, A. ;
Zongo, P. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (04) :1113-1148
[6]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[7]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[8]  
Berestycki H, 2005, J EUR MATH SOC, V7, P173
[9]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[10]   Liouville-type results for semilinear elliptic equations in unbounded domains [J].
Berestycki, Henri ;
Hamel, Francois ;
Rossi, Luca .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (03) :469-507