Optimal energy decay result for nonlinear abstract viscoelastic dissipative systems

被引:9
作者
Mustafa, Muhammad, I [1 ]
机构
[1] Univ Sharjah, Dept Math, POB 27272, Sharjah, U Arab Emirates
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 02期
关键词
Energy decay rates; Viscoelastic damping; Frictional damping; Source term; 2ND-ORDER EVOLUTION-EQUATIONS; VON KARMAN SYSTEM; WAVE-EQUATION; GENERAL DECAY; ASYMPTOTIC STABILITY; RATES; MEMORY; EXISTENCE; BEHAVIOR;
D O I
10.1007/s00033-021-01498-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the nonlinear abstract equation u(tt) + Au - integral(t)(0) g(t - s)Au(s)ds + h(u(t)) = j(u) subject to a competing effect of viscoelastic and frictional dampings. With very general assumptions on the behavior of g at infinity and the behavior of h near 0, we establish explicit and optimal energy decay result. To the best of our knowledge, this is the first time we have such combination of generality and optimality in one explicit formula for the energy decay rates of this system.
引用
收藏
页数:15
相关论文
共 42 条
[1]   General and Optimal Decay Result for a Viscoelastic Problem with Nonlinear Boundary Feedback [J].
Al-Gharabli, Mohammad M. ;
Al-Mahdi, Adel M. ;
Messaoudi, Salim A. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (04) :551-572
[2]   Optimal decay result for Kirchhoff plate equations with nonlinear damping and very general type of relaxation functions [J].
Al-Mahdi, Adel M. .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
[3]   Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems [J].
Alabau-Boussouira, F .
APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 51 (01) :61-105
[4]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[5]   A general method for proving sharp energy decay rates for memory-dissipative evolution equations [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (15-16) :867-872
[6]  
Arnold V., 1989, MATH METHODS CLASSIC, DOI 10.1007/978-1-4757-1693-1
[7]   Asymptotic Stability for a Viscoelastic Equation with Nonlinear Damping and Very General Type of Relaxation Functions [J].
Belhannache, Farida ;
Algharabli, Mohammad M. ;
Messaoudi, Salim A. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (01) :45-67
[8]  
Cabanillas E.L., 1996, Comm. Math. Phys, V177, P583, DOI DOI 10.1007/BF02099539
[9]   Integro-differential equations of hyperbolic type with positive definite kernels [J].
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (12) :4289-4335
[10]   Existence and sharp decay rate estimates for a von Karman system with long memory [J].
Cavalcanti, Marcelo M. ;
Cavalcanti, Andre D. D. ;
Lasiecka, Irena ;
Wang, Xiaojun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :289-306