Two-Grid Decoupling Method for Elliptic Problems on Disjoint Domains

被引:0
作者
Koleva, Miglena. N. [1 ]
Vulkov, Lubin G. [1 ]
机构
[1] Univ Rousse, Fac Nat Sci & Educ, Rousse 7017, Bulgaria
来源
LARGE-SCALE SCIENTIFIC COMPUTING | 2010年 / 5910卷
关键词
EQUATIONS;
D O I
10.1007/978-3-642-12535-5_94
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a two-grid finite element method for solving elliptic problems on disjoint; domains. With this method, the solution of the multi-component domain problem(simple example - two disjoint rectangles) on a fine grid is reduced to the solution of the original problem on a much coarser grid together with solution of several problems (each on a single-component domain) on fine meshes. The advantage is the computational cost although the resulting solution still achieves asymptotically optimal accuracy. Numerical experiments demonstrate the efficiency of the algorithms.
引用
收藏
页码:787 / 795
页数:9
相关论文
共 12 条
[1]   Global solvability of a Nonlinear nonstationary problem with a nonlocal boundary condition of radiative heat transfer type [J].
Amosov, AA .
DIFFERENTIAL EQUATIONS, 2005, 41 (01) :96-109
[2]  
[Anonymous], 1253 WIAS
[3]  
Axelsson O., 1993, Applications of Mathematics, V38, P249
[4]   A two-grid discretization method for decoupling systems of partial differential equations [J].
Jin, Jicheng ;
Shu, Shi ;
Xu, Jinchao .
MATHEMATICS OF COMPUTATION, 2006, 75 (256) :1617-1626
[5]  
JOVANOVIC BS, 2009, COMP MATH APPL MATH, V4, P374
[6]  
JOVANOVIC BS, 2009, IMA J NUMER IN PRESS
[7]  
Koleva MN, 2009, LECT NOTES COMPUT SC, V5434, P369
[8]   FINITE ELEMENT SOLUTION OF BOUNDARY VALUE PROBLEMS WITH NONLOCAL JUMP CONDITIONS [J].
Koleva, N. .
MATHEMATICAL MODELLING AND ANALYSIS, 2008, 13 (03) :383-400
[9]   A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow [J].
Mu, Mo ;
Xu, Jinchao .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) :1801-1813
[10]  
Tikhonov A. N., 1938, Byull. Mosk. Gos. Univ. Ser. A, V1, P1