ISOMETRIC EMBEDDING OF l1 INTO LIPSCHITZ-FREE SPACES AND l∞ INTO THEIR DUALS

被引:14
作者
Cuth, Marek [1 ]
Johanis, Michal [1 ]
机构
[1] Charles Univ Prague, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Lipschitz-free spaces; isometric embedding of l(1); isometric embedding of l(infinity);
D O I
10.1090/proc/13590
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the dual of every infinite-dimensional Lipschitzfree Banach space contains an isometric copy of l(infinity) and that it is often the case that a Lipschitz-free Banach space contains a 1-complemented subspace isometric to l(1). Even though we do not know whether the latter is true for every infinite-dimensional Lipschitz-free Banach space, we show that the space is never rotund. In the last section we survey the relations between isometric embeddability of l(infinity) into X* and containment of a good copy of l(1) in X for a general Banach space X.
引用
收藏
页码:3409 / 3421
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 2000, Bull. Pol. Acad. Sci., Math.
[2]   ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES [J].
Cuth, Marek ;
Doucha, Michal ;
Wojtaszczyk, Przemyslaw .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) :3833-3846
[3]   Lipschitz-Free Spaces Over Ultrametric Spaces [J].
Cuth, Marek ;
Doucha, Michal .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) :1893-1906
[4]   Characterization of metric spaces whose free space is isometric to l1* [J].
Dalet, Aude ;
Kaufmann, Pedro L. ;
Prochazka, Antonin .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (03) :391-400
[5]  
Deville R., 1993, Smoothness and Renormings in Banach Spaces, V64
[6]  
Dowling PN, 2001, HANDBOOK OF METRIC FIXED POINT THEORY, P269
[7]   Remarks on James's distortion theorems II [J].
Dowling, PN ;
Randrianantoanina, N ;
Turett, B .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (03) :515-522
[8]   Isometric copies of c0 and l∞ in duals of Banach spaces [J].
Dowling, PN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 244 (01) :223-227
[9]   ON RESIDUALITY OF THE SET OF ROTUND NORMS ON A BANACH-SPACE [J].
FABIAN, M ;
ZAJICEK, L ;
ZIZLER, V .
MATHEMATISCHE ANNALEN, 1982, 258 (03) :349-351
[10]  
Fabian M, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-7515-7