Doubly Connected V-States for the Generalized Surface Quasi-Geostrophic Equations

被引:42
作者
de la Hoz, Francisco [1 ]
Hassainia, Zineb [2 ]
Hmidi, Taoufik [2 ]
机构
[1] Univ Basque Country, UPV EHU, Fac Sci & Technol, Dept Appl Math & Stat & Operat Res, Barrio Sarriena S-N, Leioa 48940, Spain
[2] Univ Rennes 1, IRMAR, Campus Beaulieu, F-35042 Rennes, France
关键词
EULER EQUATIONS; SHARP FRONTS; 2; DIMENSIONS; VORTEX; DYNAMICS; CONFIGURATIONS; REGULARITY; EVOLUTION; VORTICES; BOUNDARY;
D O I
10.1007/s00205-015-0953-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of doubly connected V-states for the generalized SQG equations with alpha a]0, 1[. They can be described by countable branches bifurcating from the annulus at some explicit "eigenvalues" related to Bessel functions of the first kind. Contrary to Euler equations Hmidi et al. (Doubly connected V-states for the planar Euler equations,2015), we find V-states rotating with positive and negative angular velocities. At the end of the paper we discuss some numerical experiments concerning the limiting V-states.
引用
收藏
页码:1209 / 1281
页数:73
相关论文
共 45 条
[1]  
[Anonymous], 1945, Hydrodynamics
[2]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 1998, Perfect Incompressible Fluids
[5]   GLOBAL REGULARITY FOR VORTEX PATCHES [J].
BERTOZZI, AL ;
CONSTANTIN, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :19-28
[6]   MOTIONS OF VORTEX PATCHES [J].
BURBEA, J .
LETTERS IN MATHEMATICAL PHYSICS, 1982, 6 (01) :1-16
[7]  
Castro A., ARXIV14097040
[8]   REMARKS ON GEOMETRIC PROPERTIES OF SQG SHARP FRONTS AND α-PATCHES [J].
Castro, Angel ;
Cordoba, Diego ;
Gomez-Serrano, Javier ;
Martin Zamora, Alberto .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (12) :5045-5059
[9]   A new family of uniform vortices related to vortex configurations before merging [J].
Cerretelli, C ;
Williamson, CHK .
JOURNAL OF FLUID MECHANICS, 2003, 493 :219-229
[10]   Generalized surface quasi-geostrophic equations with singular velocities [J].
Chae, Dongho ;
Constantin, Peter ;
Cordoba, Diego ;
Gancedo, Francisco ;
Wu, Jiahong .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (08) :1037-1066