Statistical Methods for Latent Class Quantitative Trait Loci Mapping

被引:0
作者
Ye, Shuyun [1 ]
Bacher, Rhonda [1 ]
Keller, Mark P. [2 ]
Attie, Alan D. [2 ]
Kendziorski, Christina [3 ]
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Biostat & Med Informat, 1300 Univ Ave,6729 MSC, Madison, WI 53706 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
QTL mapping; obesity; type II diabetes; latent class regression; stepwise regression; complex traits; EXPERIMENTAL CROSSES; MODEL SELECTION; LIKELIHOOD; OBESITY; PYY;
D O I
10.1534/genetics.117.203885
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Identifying the genetic basis of complex traits is an important problem with the potential to impact a broad range of biological endeavors. A number of effective statistical methods are available for quantitative trait loci (QTL) mapping that allow for the efficient identification of multiple, potentially interacting, loci under a variety of experimental conditions. Although proven useful in hundreds of studies, the majority of these methods assumes a single model common to each subject, which may reduce power and accuracy when genetically distinct subclasses exist. To address this, we have developed an approach to enable latent class QTL mapping. The approach combines latent class regression with stepwise variable selection and traditional QTL mapping to estimate the number of subclasses in a population, and to identify the genetic model that best describes each subclass. Simulations demonstrate good performance of the method when latent classes are present as well as when they are not, with accurate estimation of QTL. Application of the method to case studies of obesity and diabetes in mouse gives insight into the genetic basis of related complex traits.
引用
收藏
页码:1309 / 1317
页数:9
相关论文
共 28 条
[11]   The role of peptide YY in appetite regulation and obesity [J].
Karra, Efthimia ;
Chandarana, Keval ;
Batterham, Rachel L. .
JOURNAL OF PHYSIOLOGY-LONDON, 2009, 587 (01) :19-25
[12]   BAYES FACTORS [J].
KASS, RE ;
RAFTERY, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :773-795
[13]   A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility [J].
Keller, Mark P. ;
Choi, YounJeong ;
Wang, Ping ;
Davis, Dawn Belt ;
Rabaglia, Mary E. ;
Oler, Angie T. ;
Stapleton, Donald S. ;
Argmann, Carmen ;
Schueler, Kathy L. ;
Edwards, Steve ;
Steinberg, H. Adam ;
Chaibub Neto, Elias ;
Kleinhanz, Robert ;
Turner, Scott ;
Hellerstein, Marc K. ;
Schadt, Eric E. ;
Yandell, Brian S. ;
Kendziorski, Christina ;
Attie, Alan D. .
GENOME RESEARCH, 2008, 18 (05) :706-716
[14]  
Leisch F., 2004, Journal of Statistical Software, V11, P1, DOI [DOI 10.18637/JSS.V011.I08, https://doi.org/10.18637/jss.v011.i08]
[15]   The genetics of quantitative traits: challenges and prospects [J].
Mackay, Trudy F. C. ;
Stone, Eric A. ;
Ayroles, Julien F. .
NATURE REVIEWS GENETICS, 2009, 10 (08) :565-577
[16]  
Magidson J., 2004, SAGE HDB QUANTITATIV
[17]   A Model Selection Approach for the Identification of Quantitative Trait Loci in Experimental Crosses, Allowing Epistasis [J].
Manichaikul, Ani ;
Moon, Jee Young ;
Sen, Saunak ;
Yandell, Brian S. ;
Broman, Karl W. .
GENETICS, 2009, 181 (03) :1077-1086
[18]  
Mohd Razali N., 2011, Journal of Statistical Modeling and Analytics, V2, P13, DOI DOI 10.1515/BILE-2015-0008
[19]   Effects of PYY[3-36] in rodent models of diabetes and obesity [J].
Pittner, RA ;
Moore, CX ;
Bhavsar, SP ;
Gedulin, BR ;
Smith, PA ;
Jodka, CM ;
Parkes, DG ;
Paterniti, JR ;
Srivastava, VP ;
Young, AA .
INTERNATIONAL JOURNAL OF OBESITY, 2004, 28 (08) :963-971
[20]   Maternal environment and genotype interact to establish diabesity in mice [J].
Reifsnyder, PC ;
Churchill, G ;
Leiter, EH .
GENOME RESEARCH, 2000, 10 (10) :1568-1578