Bioinspired, Tree-Root-Like Interfacial Designs for Structural Batteries with Enhanced Mechanical Properties

被引:39
作者
Jin, Tianwei [1 ]
Ma, Yirui [1 ]
Xiong, Zechen [2 ]
Fan, Xiaoyu [1 ]
Luo, Yu [1 ]
Hui, Zeyu [1 ]
Chen, Xi [2 ]
Yang, Yuan [1 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, Program Mat Sci & Engn, New York, NY 10027 USA
[2] Columbia Univ, Ctr Adv Mat Energy & Environm, Earth Engn Ctr, Dept Earth & Environm Engn, New York, NY 10027 USA
关键词
finite element simulation; interfacial design; specific energy; structural energy storage; CYCLING LITHIUM METAL; CARBON-FIBERS; HIGH-CAPACITY; ELECTRODES; PERFORMANCE; SILICON; ANODES; CELLS; POWER;
D O I
10.1002/aenm.202100997
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Structural batteries are attractive for weight reduction in vehicles, such as cars and airplanes, which requires batteries to have both excellent mechanical properties and electrochemical performance. This work develops a scalable and feasible tree-root-like lamination at the electrode/separator interface, which effectively transfers load between different layers of battery components and thus dramatically enhances the flexural modulus of pouch cells from 0.28 to 3.1 GPa. The underlying mechanism is also analyzed by finite element simulations. Meanwhile, the interfacial lamination has a limited effect on the electrochemical performance of Li-ion cells. A graphite/LiNi0.5Mn0.3Co0.2O2 full cell with such interfacial lamination delivers a steady discharge capacity of 148.6 mAh g(-1) at C/2 and 95.5% retention after 500 cycles. Moreover, the specific energy only decreases by 3%, which is the smallest reduction reported so far in structural batteries. A prototype of "electric wings" is also demonstrated, which allows an aircraft model to fly steadily. This work illustrates that engineering interfacial adhesion is an effective and scalable approach to develop structural batteries with excellent mechanical and electrochemical properties.
引用
收藏
页数:8
相关论文
共 40 条
  • [1] Asp L.E., 2021, ADV ENERGY SUSTAINAB, V2
  • [2] Structural battery composites: a review
    Asp, Leif E.
    Johansson, Mats
    Lindbergh, Goeran
    Xu, Johanna
    Zenkert, Dan
    [J]. FUNCTIONAL COMPOSITES AND STRUCTURES, 2019, 1 (04):
  • [3] Structural power composites
    Asp, Leif E.
    Greenhalgh, Emile S.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 101 : 41 - 61
  • [4] Fredi Giulia, 2018, Multifunctional Materials, V1, DOI 10.1088/2399-7532/aab707
  • [5] Mechanical, electrical and microstructural characterisation of multifunctional structural power composites
    Greenhalgh, E. S.
    Ankersen, J.
    Asp, L. E.
    Bismarck, A.
    Fontana, Q. P. V.
    Houlle, M.
    Kalinka, G.
    Kucernak, A.
    Mistry, M.
    Nguyen, S.
    Qian, H.
    Shaffer, M. S. P.
    Shirshova, N.
    Steinke, J. H. G.
    Wienrich, M.
    [J]. JOURNAL OF COMPOSITE MATERIALS, 2015, 49 (15) : 1823 - 1834
  • [6] High Precision Coulometry of Commercial PAN-Based Carbon Fibers as Electrodes in Structural Batteries
    Hagberg, Johan
    Leijonmarck, Simon
    Lindbergh, Goran
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (08) : A1790 - A1797
  • [7] Cylindrical lithium-ion structural batteries for drones
    Hollinger, Adam S.
    McAnallen, Dylan R.
    Brockett, Matthew T.
    DeLaney, Scott C.
    Ma, Jun
    Rahn, Christopher D.
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (01) : 560 - 566
  • [8] High-Performance Structural Batteries
    Hopkins, Brandon J.
    Long, Jeffrey W.
    Rolison, Debra R.
    Parker, Joseph F.
    [J]. JOULE, 2020, 4 (11) : 2240 - 2243
  • [9] Nonflammable electrolyte enhances battery safety
    Hu, Liangbing
    Xu, Kang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (09) : 3205 - 3206
  • [10] Mechanically-robust structural lithium-sulfur battery with high energy density
    Huang, Wenlong
    Wang, Peiyu
    Liao, Xiangbiao
    Chen, Yijun
    Borovilas, James
    Jin, Tianwei
    Li, Aijun
    Cheng, Qian
    Zhang, Yifan
    Zhai, Haowei
    Chitu, Adrain
    Shan, Zhongqiang
    Yang, Yuan
    [J]. ENERGY STORAGE MATERIALS, 2020, 33 : 416 - 422