On the wave representation of hyperbolic, elliptic, and parabolic Eisenstein series

被引:4
作者
Jorgenson, Jay [1 ]
von Pippich, Anna-Maria [2 ]
Smajlovic, Lejla [3 ]
机构
[1] CUNY City Coll, Dept Math, Convent Ave & 138th St, New York, NY 10031 USA
[2] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[3] Univ Sarajevo, Dept Math, Sarajevo 71000, Bosnia & Herceg
基金
美国国家科学基金会;
关键词
Eisenstein series; Meromorphic continuation; Wave distribution; ANALYTIC CONTINUATION;
D O I
10.1016/j.aim.2015.10.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a unified approach to the construction of the hyperbolic and elliptic Eisenstein series on a finite volume hyperbolic Riemann surface. Specifically, we derive expressions for the hyperbolic and elliptic Eisenstein series as integral transforms of the kernel of a wave operator. Established results in the literature relate the wave kernel to the heat kernel, which admits explicit construction from various points of view. Therefore, we obtain a sequence of integral transforms which begins with the heat kernel, obtains a Poisson and wave kernel, and then yields the hyperbolic and elliptic Eisenstein series. In the case of a non-compact finite volume hyperbolic Riemann surface, we finally show how to express the parabolic Eisenstein series in terms of the integral transform of a wave kernel. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:887 / 921
页数:35
相关论文
共 20 条
[1]  
[Anonymous], 1973, Elementary theory of Eisenstein series
[2]  
[Anonymous], 2002, GRAD STUD MATH
[3]  
[Anonymous], 1995, GRAD TEXTS MATH
[4]  
Chavel Isaac, 1984, EIGENVALUES RIEMANNI
[5]  
DEVERDIERE YC, 1981, CR ACAD SCI I-MATH, V293, P361
[6]   SPECTRUM OF POSITIVE ELLIPTIC OPERATORS AND PERIODIC BICHARACTERISTICS [J].
DUISTERMAAT, JJ ;
GUILLEMIN, VW .
INVENTIONES MATHEMATICAE, 1975, 29 (01) :39-79
[7]  
Falliero T, 2007, MATH ANN, V339, P341, DOI 10.1007/s00208-007-0116-0
[8]   On the Behavior of Eisenstein Series Through Elliptic Degeneration [J].
Garbin, D. ;
v. Pippich, A. -M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (02) :511-528
[9]  
Garbin D, 2008, COMMENT MATH HELV, V83, P701
[10]  
HEJHAL DA, 1983, LECT NOTES MATH, V1001, P1