Universal scaling laws for correlation spreading in quantum systems with short- and long-range interactions

被引:54
作者
Cevolani, Lorenzo [1 ]
Despres, Julien [2 ]
Carleo, Giuseppe [3 ,4 ]
Tagliacozzo, Luca [5 ,6 ]
Sanchez-Palencia, Laurent [2 ]
机构
[1] Georg August Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany
[2] Univ Paris Saclay, Ctr Phys Theor, Ecole Polytech, CNRS, F-91128 Palaiseau, France
[3] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[4] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[5] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[6] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
关键词
MANY-BODY SYSTEM; POLAR-MOLECULES; TRAPPED IONS; SPIN MODELS; DYNAMICS; DIAMOND; ENTANGLEMENT; PROPAGATION; SIMULATION;
D O I
10.1103/PhysRevB.98.024302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spreading of correlations after a quantum quench is studied in a wide class of lattice systems, with short- and long-range interactions. Using a unifying quasiparticle framework, we unveil a rich structure of the correlation cone, which encodes the footprints of several microscopic properties of the system. When the quasiparticle excitations propagate with a bounded group velocity, we show that the correlation edge and correlation maxima move with different velocities that we derive. For systems with a divergent group velocity, especially relevant for long-range interacting systems, the correlation edge propagates slower than ballistic. In contrast, the correlation maxima propagate faster than ballistic in gapless systems but ballistic in gapped systems. Our results shed light on existing experimental and numerical observations and pave the way to the next generation of experiments. For instance, we argue that the dynamics of correlation maxima can be used as a witness of the elementary excitations of the system.
引用
收藏
页数:9
相关论文
共 56 条
[1]   Oscillating superfluidity of bosons in optical lattices [J].
Altman, E ;
Auerbach, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (25) :1-250404
[2]  
Auerbach A., 2012, Interacting Electrons and Quantum Magnetism
[3]   Extended Bose-Hubbard models with ultracold magnetic atoms [J].
Baier, S. ;
Mark, M. J. ;
Petter, D. ;
Aikawa, K. ;
Chomaz, L. ;
Cai, Z. ;
Baranov, M. ;
Zoller, P. ;
Ferlaino, F. .
SCIENCE, 2016, 352 (6282) :201-205
[4]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[5]   Propagation front of correlations in an interacting Bose gas [J].
Barmettler, Peter ;
Poletti, Dario ;
Cheneau, Marc ;
Kollath, Corinna .
PHYSICAL REVIEW A, 2012, 85 (05)
[6]   All-optical production of chromium Bose-Einstein condensates [J].
Beaufils, Q. ;
Chicireanu, R. ;
Zanon, T. ;
Laburthe-Tolra, B. ;
Marechal, E. ;
Vernac, L. ;
Keller, J. -C. ;
Gorceix, O. .
PHYSICAL REVIEW A, 2008, 77 (06)
[7]   Observation of ultralong-range Rydberg molecules [J].
Bendkowsky, Vera ;
Butscher, Bjoern ;
Nipper, Johannes ;
Shaffer, James P. ;
Loew, Robert ;
Pfau, Tilman .
NATURE, 2009, 458 (7241) :1005-U76
[8]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/NPHYS2252, 10.1038/nphys2252]
[9]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[10]   Experimental investigations of dipole-dipole interactions between a few Rydberg atoms [J].
Browaeys, Antoine ;
Barredo, Daniel ;
Lahaye, Thierry .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (15)