Vertex connectivity of the power graph of a finite cyclic group

被引:16
作者
Chattopadhyay, Sriparna [1 ]
Patra, Kamal Lochan [1 ]
Sahoo, Binod Kumar [1 ]
机构
[1] HBNI, Natl Inst Sci Educ & Res, Sch Math Sci, At Po Jatni, Bhubaneswar 752050, Odisha, India
关键词
Power graph; Vertex connectivity; Cyclic group; Euler's totient function;
D O I
10.1016/j.dam.2018.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n = p(1)(n1)p(2)(n2) . . . p(r)(nr), where r, n(1), n(2), . . . , n(r) are positive integers and p(1), p(2), . . . , P-r are distinct prime numbers with p(1) < p(2) < . . . < p(r). For the finite cyclic group C-n, of order n, let P(C-n) be the power graph of C-n and kappa(P(C-n)) be the vertex connectivity of P(C-n). It is known that kappa(P(C-n)) = p(1)(n1) - 1 if r = 1. For r >= 2, we determine the exact value of kappa(P(C-n)) when 2 phi(p(1)p(2) . . . Pr-1) >= P1P2 . . . Pr-1, and give an upper bound for kappa(P(C-n)) when 2 phi(p(1)p(2) . . . Pr-1) < p(1)p(2) . . . Pr-1, which is sharp for many values of n but equality need not hold always. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 271
页数:13
相关论文
共 13 条
  • [11] Power graphs and semigroups of matrices
    Kelarev, AV
    Quinn, SJ
    Smolíková, R
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 63 (02) : 341 - 344
  • [12] On the Power Graph of a Finite Group
    Mirzargar, M.
    Ashrafi, A. R.
    Nadjafi-Arani, M. J.
    [J]. FILOMAT, 2012, 26 (06) : 1201 - 1208
  • [13] Certain properties of the power graph associated with a finite group
    Moghaddamfar, A. R.
    Rahbariyan, S.
    Shi, W. J.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (07)