共 13 条
Vertex connectivity of the power graph of a finite cyclic group
被引:16
作者:
Chattopadhyay, Sriparna
[1
]
Patra, Kamal Lochan
[1
]
Sahoo, Binod Kumar
[1
]
机构:
[1] HBNI, Natl Inst Sci Educ & Res, Sch Math Sci, At Po Jatni, Bhubaneswar 752050, Odisha, India
关键词:
Power graph;
Vertex connectivity;
Cyclic group;
Euler's totient function;
D O I:
10.1016/j.dam.2018.06.001
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let n = p(1)(n1)p(2)(n2) . . . p(r)(nr), where r, n(1), n(2), . . . , n(r) are positive integers and p(1), p(2), . . . , P-r are distinct prime numbers with p(1) < p(2) < . . . < p(r). For the finite cyclic group C-n, of order n, let P(C-n) be the power graph of C-n and kappa(P(C-n)) be the vertex connectivity of P(C-n). It is known that kappa(P(C-n)) = p(1)(n1) - 1 if r = 1. For r >= 2, we determine the exact value of kappa(P(C-n)) when 2 phi(p(1)p(2) . . . Pr-1) >= P1P2 . . . Pr-1, and give an upper bound for kappa(P(C-n)) when 2 phi(p(1)p(2) . . . Pr-1) < p(1)p(2) . . . Pr-1, which is sharp for many values of n but equality need not hold always. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 271
页数:13
相关论文