Vertex connectivity of the power graph of a finite cyclic group

被引:19
作者
Chattopadhyay, Sriparna [1 ]
Patra, Kamal Lochan [1 ]
Sahoo, Binod Kumar [1 ]
机构
[1] HBNI, Natl Inst Sci Educ & Res, Sch Math Sci, At Po Jatni, Bhubaneswar 752050, Odisha, India
关键词
Power graph; Vertex connectivity; Cyclic group; Euler's totient function;
D O I
10.1016/j.dam.2018.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n = p(1)(n1)p(2)(n2) . . . p(r)(nr), where r, n(1), n(2), . . . , n(r) are positive integers and p(1), p(2), . . . , P-r are distinct prime numbers with p(1) < p(2) < . . . < p(r). For the finite cyclic group C-n, of order n, let P(C-n) be the power graph of C-n and kappa(P(C-n)) be the vertex connectivity of P(C-n). It is known that kappa(P(C-n)) = p(1)(n1) - 1 if r = 1. For r >= 2, we determine the exact value of kappa(P(C-n)) when 2 phi(p(1)p(2) . . . Pr-1) >= P1P2 . . . Pr-1, and give an upper bound for kappa(P(C-n)) when 2 phi(p(1)p(2) . . . Pr-1) < p(1)p(2) . . . Pr-1, which is sharp for many values of n but equality need not hold always. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 271
页数:13
相关论文
共 13 条
[11]   Power graphs and semigroups of matrices [J].
Kelarev, AV ;
Quinn, SJ ;
Smolíková, R .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 63 (02) :341-344
[12]   On the Power Graph of a Finite Group [J].
Mirzargar, M. ;
Ashrafi, A. R. ;
Nadjafi-Arani, M. J. .
FILOMAT, 2012, 26 (06) :1201-1208
[13]   Certain properties of the power graph associated with a finite group [J].
Moghaddamfar, A. R. ;
Rahbariyan, S. ;
Shi, W. J. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (07)