Sums of two squares in short intervals

被引:6
作者
Balog, A [1 ]
Wooley, TD
机构
[1] Math Inst, H-1364 Budapest, Hungary
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2000年 / 52卷 / 04期
关键词
sums of two squares; sieves; short intervals; smooth numbers;
D O I
10.4153/CJM-2000-029-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S denote the set of integers representable as a sum of two squares. Since S can be described as the unsifted elements of a sieving process of positive dimension, it is to be expected that S has many properties in common with the set of prime numbers. In this paper we exhibit "unexpected irregularities" in the distribution of sums of two squares in short intervals, a phenomenon analogous to that discovered by Maier, over a decade ago, in the distribution of prime numbers. To be precise, we show that there are infinitely many short intervals containing considerably more elements of S than expected, and infinitely many intervals containing considerably fewer than expected.
引用
收藏
页码:673 / 694
页数:22
相关论文
共 18 条
[1]  
Buchstab AlexanderAdolfovich., 1937, Mat. Sbornik, V2, P1239
[2]  
FRIEDLANDER IB, 1982, MATH P CAMBRIDGE PHI, V92, P381
[3]   SIFTING SHORT INTERVALS [J].
FRIEDLANDER, JB .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1982, 91 (JAN) :9-15
[4]  
GRANVILLE A, 1995, P INT C MATH, V2, P388
[5]  
GRANVILLE A, 1995, P INT C MATH, V1, P388
[6]  
HOOLEY C, 1994, J REINE ANGEW MATH, V452, P79
[7]  
Iwaniec H., 1976, Acta Arith, V29, P69
[8]  
LANDAU E, 1909, Handbuch der Lehre von der Verteilung der Primzahlen, V2
[9]  
MAIER H, 1985, MICH MATH J, V32, P221
[10]   ON THE NUMBER OF Y-SMOOTH NATURAL-NUMBERS LESS-THAN-OR-EQUAL-TO X REPRESENTABLE AS A SUM OF 2 INTEGER SQUARES [J].
MOREE, P .
MANUSCRIPTA MATHEMATICA, 1993, 80 (02) :199-211