Structure of Cesaro function spaces'

被引:49
作者
Astashkin, Sergei V. [1 ]
Maligranda, Lech [2 ]
机构
[1] Samara State Univ, Dept Math & Mech, Samara 443011, Russia
[2] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2009年 / 20卷 / 03期
关键词
Cesaro sequence spaces; Cesaro function spaces; Kothe dual; Associated space; Dual space; L-p spaces; Copies of l(P); Weak Banach-Saks property; Dunford-Pettis property; Rademacher functions; Type; Cotype; Isomorphism; Subspaces; Complemented subspaces; BANACH-SAKS PROPERTY; CONSTANT;
D O I
10.1016/S0019-3577(10)00002-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The structure of the Cesaro function spaces Ces(p) on both [0. 1] and [0. infinity) for 1 < p <= infinity is investigated. We find their dual spaces, which equivalent norms have different description on [0, 1] and [0, infinity). The spaces Ces(p) for 1 < p < infinity are not reflexive but strictly convex. They are not isomorphic to any L-q space with 1 <= q <= infinity. They have "near zero" complemented subspaces isomorphic to l(P) and "in the middle" contain an asymptotically isometric copy of l(1) and also a copy of L-1[0, 1]. They do not have Dunford-Pettis property but they do have the weak Banach-Saks property Cesaro function spaces on [0. 1] and [0. infinity) are isomorphic for 1 < p <= infinity. Moreover, we give characterizations in terms of p and q when Ces(p)[0, 1] contains an isomorphic copy of l(q).
引用
收藏
页码:329 / 379
页数:51
相关论文
共 59 条
[11]  
Bennett G, 1996, MEM AM MATH SOC, V120, pR8
[12]  
Chen S, 2001, HANDBOOK OF METRIC FIXED POINT THEORY, P339
[13]  
Cui Y., 1999, Acta Sci. Math, V65, P179
[14]  
CUI Y, 1997, COMMENT MATH PRACE M, V37, P47
[15]  
Cui Y., 2000, Southeast Asian Bull. Math., V24, P201, DOI DOI 10.1007/S100120070003
[16]  
CUI Y, 2000, P 5 INT C POZN AUG 2, P141
[17]  
Cui Y., 1999, Collect. Math., V50, P277
[18]   Packing constant for Cesaro sequence spaces [J].
Cui, YN ;
Hudzik, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) :2695-2702
[19]   The Banach-Saks property in rearrangement invariant spaces [J].
Dodds, PG ;
Semenov, EM ;
Sukochev, FA .
STUDIA MATHEMATICA, 2004, 162 (03) :263-294
[20]  
Dowling PN, 2001, HANDBOOK OF METRIC FIXED POINT THEORY, P269