Structure of Cesaro function spaces'

被引:49
作者
Astashkin, Sergei V. [1 ]
Maligranda, Lech [2 ]
机构
[1] Samara State Univ, Dept Math & Mech, Samara 443011, Russia
[2] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2009年 / 20卷 / 03期
关键词
Cesaro sequence spaces; Cesaro function spaces; Kothe dual; Associated space; Dual space; L-p spaces; Copies of l(P); Weak Banach-Saks property; Dunford-Pettis property; Rademacher functions; Type; Cotype; Isomorphism; Subspaces; Complemented subspaces; BANACH-SAKS PROPERTY; CONSTANT;
D O I
10.1016/S0019-3577(10)00002-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The structure of the Cesaro function spaces Ces(p) on both [0. 1] and [0. infinity) for 1 < p <= infinity is investigated. We find their dual spaces, which equivalent norms have different description on [0, 1] and [0, infinity). The spaces Ces(p) for 1 < p < infinity are not reflexive but strictly convex. They are not isomorphic to any L-q space with 1 <= q <= infinity. They have "near zero" complemented subspaces isomorphic to l(P) and "in the middle" contain an asymptotically isometric copy of l(1) and also a copy of L-1[0, 1]. They do not have Dunford-Pettis property but they do have the weak Banach-Saks property Cesaro function spaces on [0. 1] and [0. infinity) are isomorphic for 1 < p <= infinity. Moreover, we give characterizations in terms of p and q when Ces(p)[0, 1] contains an isomorphic copy of l(q).
引用
收藏
页码:329 / 379
页数:51
相关论文
共 59 条
[1]  
Albiac F, 2006, GRAD TEXTS MATH, V233, P1
[2]  
Aliprantis CD., 1985, Positive Operators
[3]   A FIXED-POINT FREE NON-EXPANSIVE MAP [J].
ALSPACH, DE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 82 (03) :423-424
[4]  
[Anonymous], 2000, Bull. Pol. Acad. Sci., Math.
[5]  
[Anonymous], 1995, CAMBRIDGE STUD ADV M
[6]   Banach-Saks property in Marcinkiewicz spaces [J].
Astashkin, S. V. ;
Sukochev, F. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) :1231-1258
[7]   Cesaro function spaces fail the fixed point property [J].
Astashkin, Sergei V. ;
Maligranda, Lech .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4289-4294
[8]  
ASTASHKIN SV, STUDIA MATH IN PRESS
[9]  
Banach S., 1932, MONOGRAFIE MATEMATYC, V1
[10]  
Bennett C., 1988, INTERPOLATION OPERAT