Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine

被引:6
作者
Zhu, Zhou [1 ]
Ihle, Nathan T. [1 ]
Rejto, Paul A. [1 ]
Zarrinkar, Patrick P. [1 ]
机构
[1] Pfizer Worldwide Res & Dev, La Jolla Labs, Oncol Res Unit, 10777 Sci Ctr Dr, San Diego, CA 92121 USA
来源
BMC GENOMICS | 2016年 / 17卷
关键词
Outlier analysis; Functional genomics; Oncology; Cancer; Target identification; Precision medicine; Oncogene addiction; Synthetic lethality; RNA INTERFERENCE; CANCER GENES; COMPREHENSIVE RESOURCE; SOMATIC MUTATIONS; EXPRESSION; DISCOVERY; PROLIFERATION; SENSITIVITY; BIMODALITY; SIGNATURES;
D O I
10.1186/s12864-016-2807-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency. Results: Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles. Conclusions: The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.
引用
收藏
页数:13
相关论文
共 64 条
  • [41] CORUM: the comprehensive resource of mammalian protein complexes-2009
    Ruepp, Andreas
    Waegele, Brigitte
    Lechner, Martin
    Brauner, Barbara
    Dunger-Kaltenbach, Irmtraud
    Fobo, Gisela
    Frishman, Goar
    Montrone, Corinna
    Mewes, H. -Werner
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : D497 - D501
  • [42] Quantitative expression profiling guided by common retroviral insertion sites reveals novel and cell type-specific cancer genes in leukemia
    Sauvageau, Martin
    Miller, Michelle
    Lemieux, Sebastien
    Lessard, Julie
    Hebert, Josee
    Sauvageau, Guy
    [J]. BLOOD, 2008, 111 (02) : 790 - 799
  • [43] gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens
    Schmich, Fabian
    Szczurek, Ewa
    Kreibich, Saskia
    Dilling, Sabrina
    Andritschke, Daniel
    Casanova, Alain
    Low, Shyan Huey
    Eicher, Simone
    Muntwiler, Simone
    Emmenlauer, Mario
    Raemoe, Pauli
    Conde-Alvarez, Raquel
    von Mering, Christian
    Hardt, Wolf-Dietrich
    Dehio, Christoph
    Beerenwinkel, Niko
    [J]. GENOME BIOLOGY, 2015, 16
  • [44] High-throughput functional genomics using CRISPR-Cas9
    Shalem, Ophir
    Sanjana, Neville E.
    Zhang, Feng
    [J]. NATURE REVIEWS GENETICS, 2015, 16 (05) : 299 - 311
  • [45] ATARiS: Computational quantification of gene suppression phenotypes from multisample RNAi screens
    Shao, Diane D.
    Tsherniak, Aviad
    Gopal, Shuba
    Weir, Barbara A.
    Tamayo, Pablo
    Stransky, Nicolas
    Schumacher, Steven E.
    Zack, Travis I.
    Beroukhim, Rameen
    Garraway, Levi A.
    Margolin, Adam A.
    Root, David E.
    Hahn, William C.
    Mesirov, Jill P.
    [J]. GENOME RESEARCH, 2013, 23 (04) : 665 - 678
  • [46] Sigoillot FD, 2012, NAT METHODS, V9, P363, DOI [10.1038/nmeth.1898, 10.1038/NMETH.1898]
  • [47] Su Y.L. Hairui., 2015, Cancer Translational Medicine, V1, P21, DOI DOI 10.4103/2395-3977.151483
  • [48] Systematic determination of genetic network architecture
    Tavazoie, S
    Hughes, JD
    Campbell, MJ
    Cho, RJ
    Church, GM
    [J]. NATURE GENETICS, 1999, 22 (03) : 281 - 285
  • [49] PACK: Profile Analysis using Clustering and Kurtosis to find molecular classifiers in cancer
    Teschendorff, Andrew E.
    Naderi, Ali
    Barbosa-Morais, Nuno L.
    Caldas, Carlos
    [J]. BIOINFORMATICS, 2006, 22 (18) : 2269 - 2275
  • [50] Outlier sums for differential gene expression analysis
    Tibshirani, Robert
    Hastie, Trevor
    [J]. BIOSTATISTICS, 2007, 8 (01) : 2 - 8