Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine

被引:6
作者
Zhu, Zhou [1 ]
Ihle, Nathan T. [1 ]
Rejto, Paul A. [1 ]
Zarrinkar, Patrick P. [1 ]
机构
[1] Pfizer Worldwide Res & Dev, La Jolla Labs, Oncol Res Unit, 10777 Sci Ctr Dr, San Diego, CA 92121 USA
来源
BMC GENOMICS | 2016年 / 17卷
关键词
Outlier analysis; Functional genomics; Oncology; Cancer; Target identification; Precision medicine; Oncogene addiction; Synthetic lethality; RNA INTERFERENCE; CANCER GENES; COMPREHENSIVE RESOURCE; SOMATIC MUTATIONS; EXPRESSION; DISCOVERY; PROLIFERATION; SENSITIVITY; BIMODALITY; SIGNATURES;
D O I
10.1186/s12864-016-2807-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency. Results: Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles. Conclusions: The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.
引用
收藏
页数:13
相关论文
共 64 条
  • [1] RNA interference: Biology, mechanism, and applications
    Agrawal, N
    Dasaradhi, PVN
    Mohmmed, A
    Malhotra, P
    Bhatnagar, RK
    Mukherjee, SK
    [J]. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2003, 67 (04) : 657 - +
  • [2] [Anonymous], OPEN J STAT
  • [3] Adenomatous polyposis coli (APC):: a multi-functional tumor suppressor gene
    Aoki, Koji
    Taketo, Makoto M.
    [J]. JOURNAL OF CELL SCIENCE, 2007, 120 (19) : 3327 - 3335
  • [4] The history and future of targeting cyclin-dependent kinases in cancer therapy
    Asghar, Uzma
    Witkiewicz, Agnieszka K.
    Turner, Nicholas C.
    Knudsen, Erik S.
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2015, 14 (02) : 130 - 146
  • [5] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607
  • [6] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [7] Bimodal gene expression patterns in breast cancer
    Bessarabova, Marina
    Kirillov, Eugene
    Shi, Weiwei
    Bugrim, Andrej
    Nikolsky, Yuri
    Nikolskaya, Tatiana
    [J]. BMC GENOMICS, 2010, 11
  • [8] Signatures of mutation and selection in the cancer genome
    Bignell, Graham R.
    Greenman, Chris D.
    Davies, Helen
    Butler, Adam P.
    Edkins, Sarah
    Andrews, Jenny M.
    Buck, Gemma
    Chen, Lina
    Beare, David
    Latimer, Calli
    Widaa, Sara
    Hinton, Jonathon
    Fahey, Ciara
    Fu, Beiyuan
    Swamy, Sajani
    Dalgliesh, Gillian L.
    Teh, Bin T.
    Deloukas, Panos
    Yang, Fengtang
    Campbell, Peter J.
    Futreal, P. Andrew
    Stratton, Michael R.
    [J]. NATURE, 2010, 463 (7283) : 893 - U61
  • [9] Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR
    Boettcher, Michael
    McManus, Michael T.
    [J]. MOLECULAR CELL, 2015, 58 (04) : 575 - 585
  • [10] siRNA off-target effects in genome-wide screens identify signaling pathway members
    Buehler, Eugen
    Khan, Aly A.
    Marine, Shane
    Rajaram, Misha
    Bahl, Amit
    Burchard, Julja
    Ferrer, Marc
    [J]. SCIENTIFIC REPORTS, 2012, 2