Exact solutions of nonlinear Schrodinger equation by using symbolic computation

被引:28
|
作者
Kaplan, Melike [1 ]
Unsal, Omer [1 ]
Bekir, Ahmet [1 ]
机构
[1] Eskiehir Osmangazi Univ, Art Sci Fac, Dept Math Comp, Eskisehir, Turkey
关键词
exact solutions; symbolic computation; nonlinear Schrodinger equation; (G; '/G; 1/G)-expansion method; (1/G ')-expansion method; TRAVELING-WAVE SOLUTIONS; EXP-FUNCTION METHOD; (G'/G)-EXPANSION METHOD; EVOLUTION-EQUATIONS; TRANSFORMATION;
D O I
10.1002/mma.3626
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The (G/G,1/G)-expansion method and (1/G)-expansion method are interesting approaches to find new and more general exact solutions to the nonlinear evolution equations. In this paper, these methods are applied to construct new exact travelling wave solutions of nonlinear Schrodinger equation. The travelling wave solutions are expressed by hyperbolic functions, trigonometric functions and rational functions. It is shown that the proposed methods provide a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:2093 / 2099
页数:7
相关论文
共 50 条
  • [1] Symbolic computation of exact solutions for a nonlinear evolution equation
    Liu Yinping
    Li Zhibin
    Wang Kuncheng
    CHAOS SOLITONS & FRACTALS, 2007, 31 (05) : 1173 - 1180
  • [2] Some exact analytical solutions to the inhomogeneous higher-order nonlinear Schrodinger equation using symbolic computation
    Li, Biao
    Chen, Yong
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (10-11): : 509 - 518
  • [3] Symbolic computation of the potential in a nonlinear Schrodinger equation
    Kacar, Ahmet
    Terzioglu, Omer
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (02) : 475 - 483
  • [4] Types of solutions of the variable-coefficient nonlinear Schrodinger equation with symbolic computation
    Liu, Wen-Jun
    Tian, Bo
    Zhang, Hai-Qiang
    PHYSICAL REVIEW E, 2008, 78 (06)
  • [5] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [6] Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrodinger equation in nonlinear optics
    Liu, Wen-Jun
    Tian, Bo
    OPTICAL AND QUANTUM ELECTRONICS, 2012, 43 (11-15) : 147 - 162
  • [7] New envelope solutions for complex nonlinear Schrodinger+ equation via symbolic computation
    Yan, ZY
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (02): : 225 - 235
  • [8] Exact solutions of a nonlocal nonlinear Schrodinger equation
    Gao, Hui
    Xu, Tianzhou
    Yang, Shaojie
    Wang, Gangwei
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (9-10): : 651 - 657
  • [9] Exact solutions of a generalized nonlinear Schrodinger equation
    Zhang, Shaowu
    Yi, Lin
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [10] The exact solutions for a nonisospectral nonlinear Schrodinger equation
    Ning, Tong-ke
    Zhang, Weiguo
    Jia, Gao
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1100 - 1105