Compositionally restricted attention-based network for materials property predictions

被引:137
作者
Wang, Anthony Yu-Tung [1 ]
Kauwe, Steven K. [2 ]
Murdock, Ryan J. [2 ]
Sparks, Taylor D. [2 ]
机构
[1] Tech Univ Berlin, Chair Adv Ceram Mat, Fachgebiet Keram Werkstoffe, Berlin, Germany
[2] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
关键词
THERMAL-CONDUCTIVITY; CRYSTAL-STRUCTURE; LEVEL; MODEL;
D O I
10.1038/s41524-021-00545-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we demonstrate an application of the Transformer self-attention mechanism in the context of materials science. Our network, the Compositionally Restricted Attention-Based network (CrabNet), explores the area of structure-agnostic materials property predictions when only a chemical formula is provided. Our results show that CrabNet's performance matches or exceeds current best-practice methods on nearly all of 28 total benchmark datasets. We also demonstrate how CrabNet's architecture lends itself towards model interpretability by showing different visualization approaches that are made possible by its design. We feel confident that CrabNet and its attention-based framework will be of keen interest to future materials informatics researchers.
引用
收藏
页数:10
相关论文
共 72 条
[1]   Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J].
Agrawal, Ankit ;
Choudhary, Alok .
APL MATERIALS, 2016, 4 (05)
[2]  
Al-Rfou R, 2019, AAAI CONF ARTIF INTE, P3159
[3]  
Baker Bowen, 2020, INT C LEARN REPR ICL
[4]   Best Practice Leads to the Best Materials Informatics [J].
Barnard, Amanda S. .
MATTER, 2020, 3 (01) :22-23
[5]   A critical examination of compound stability predictions from machine-learned formation energies [J].
Bartel, Christopher J. ;
Trewartha, Amalie ;
Wang, Qi ;
Dunn, Alexander ;
Jain, Anubhav ;
Ceder, Gerbrand .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[6]   Computational screening of perovskite metal oxides for optimal solar light capture [J].
Castelli, Ivano E. ;
Olsen, Thomas ;
Datta, Soumendu ;
Landis, David D. ;
Dahl, Soren ;
Thygesen, Kristian S. ;
Jacobsen, Karsten W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5814-5819
[7]  
Choudhary K, 2018, PHYS REV MATER, V2, DOI [10.1103/PhysRevMaterials.2.083801, 10.1103/physrevmaterials.2.083801]
[8]   Benchmark AFLOW Data Sets for Machine Learning [J].
Clement, Conrad L. ;
Kauwe, Steven K. ;
Sparks, Taylor D. .
INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2020, 9 (02) :153-156
[9]  
Conduit G., 2017, Mechanical properties of some steels
[10]   Predicting crystal structures with data mining of quantum calculations [J].
Curtarolo, S ;
Morgan, D ;
Persson, K ;
Rodgers, J ;
Ceder, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (13)