Rheological representation of fractional order viscoelastic material models

被引:70
作者
Papoulia, Katerina D. [1 ]
Panoskaltsis, Vassilis P. [2 ]
Kurup, Nishu V. [3 ]
Korovajchuk, Igor [4 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] Democritus Univ Thrace, Dept Civil Engn, GR-67100 Xanthi, Greece
[3] Houston Offshore Engn, Houston, TX 77079 USA
[4] Sest Inc, Middleburg Hts, OH 44130 USA
关键词
Constitutive equation; Finite-element analysis; Storage modulus; Loss modulus; Relaxation time spectrum; LINEAR VISCOELASTICITY; KUHN MODEL;
D O I
10.1007/s00397-010-0436-y
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We develop rheological representations, i.e., discrete spectrum models, for the fractional derivative viscoelastic element (fractional dashpot or springpot). Our representations are generalized Maxwell models or series of Kelvin-Voigt units, which, however, maintain the number of parameters of the corresponding fractional order model. Accordingly, the number of parameters of the rheological representation is independent of the number of rheological units. We prove that the representations converge to the corresponding fractional model in the limit as the number of units tends to infinity. The representations extend to compound fractional derivative models such as the fractional Maxwell model, fractional Kelvin-Voigt model, and fractional standard linear solid. Computational experiments show that the rheological representations are accurate approximations of the fractional order models even for a small number of units.
引用
收藏
页码:381 / 400
页数:20
相关论文
共 22 条
[1]   Adaptive discretization of fractional order viscoelasticity using sparse time history [J].
Adolfsson, K ;
Enelund, M ;
Larsson, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (42-44) :4567-4590
[2]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[3]  
Ferry J.D., 1980, VISCOELASTIC PROPERT, V3rd
[4]  
GLOCKLE WG, 1991, MACROMOLECULES, V24, P6426
[5]  
Golden JM, 1988, BOUNDARY VALUE PROBL
[6]   FRACTAL RHEOLOGICAL MODELS AND FRACTIONAL DIFFERENTIAL-EQUATIONS FOR VISCOELASTIC BEHAVIOR [J].
HEYMANS, N ;
BAUWENS, JC .
RHEOLOGICA ACTA, 1994, 33 (03) :210-219
[7]  
Hilfer R., 2000, APPL FRACTIONAL CALC
[8]  
John D.F., 1980, Viscoelastic Properties of Polymers, V3rd ed.
[9]   RELAXATIONSZEITSPEKTRUM, ELASTIZITAT UND VISKOSITAT VON KAUTSCHUK .2. [J].
KUHN, W ;
KUNZLE, O ;
PREISSMANN, A .
HELVETICA CHIMICA ACTA, 1947, 30 (02) :464-486
[10]   RELAXATIONSZEITSPEKTRUM, ELASTIZITAT UND VISKOSITAT VON KAUTSCHUK .1. [J].
KUHN, W ;
KUNZLE, O ;
PREISSMANN, A .
HELVETICA CHIMICA ACTA, 1947, 30 (01) :307-328