Proof of a problem on Laplacian eigenvalues of trees

被引:1
作者
Yuan, Xiying [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Tree; Perfect matching; k-th Laplacian eigenvalue;
D O I
10.1016/j.laa.2016.03.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Denote by mu(k)(L(T)) the k-th Laplacian eigenvalue of a tree T. Let tau(k) (2t) be the set of all trees of order 2tk with perfect matchings. In this note, the trees T in tau(k) (2t) with mu(k) (L(T)) = t+2-I-root t(2)+4/2 are characterized, which solves Problem of J.X. Li, W.C. Shiu and A. Chang in [3] completely. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:180 / 189
页数:10
相关论文
共 7 条