Network propagation: a universal amplifier of genetic associations

被引:432
作者
Cowen, Lenore [1 ]
Ideker, Trey [2 ]
Raphael, Benjamin J. [3 ]
Sharan, Roded [4 ]
机构
[1] Tufts Univ, Dept Comp Sci, Medford, MA 02155 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[4] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-69978 Tel Aviv, Israel
关键词
PROTEIN-INTERACTION NETWORKS; CANDIDATE DISEASE GENES; GLOBAL ALIGNMENT; DIFFUSION KERNEL; RANDOM-WALK; PREDICTION; ALGORITHM; PATHWAYS; IDENTIFICATION; INTERACTOME;
D O I
10.1038/nrg.2017.38
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Biological networks are powerful resources for the discovery of genes and genetic modules that drive disease. Fundamental to network analysis is the concept that genes underlying the same phenotype tend to interact; this principle can be used to combine and to amplify signals from individual genes. Recently, numerous bioinformatic techniques have been proposed for genetic analysis using networks, based on random walks, information diffusion and electrical resistance. These approaches have been applied successfully to identify disease genes, genetic modules and drug targets. In fact, all these approaches are variations of a unifying mathematical machinery - network propagation - suggesting that it is a powerful data transformation method of broad utility in genetic research.
引用
收藏
页码:551 / 562
页数:12
相关论文
共 107 条
[1]   RedNemo: topology-based PPI network reconstruction via repeated diffusion with neighborhood modifications [J].
Alkan, Ferhat ;
Erten, Cesim .
BIOINFORMATICS, 2017, 33 (04) :537-544
[2]  
[Anonymous], LECT NOTES COMPUTER
[3]  
[Anonymous], 1984, Random walks and electric networks
[4]  
[Anonymous], 1999, PAGERANK CITATION RA
[5]  
[Anonymous], 2010, A kinetic view of statistical physics
[6]  
[Anonymous], 2002, P 19 INT C MACH LEAR
[7]  
[Anonymous], BIOKDD 05
[8]   The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans [J].
Ardlie, Kristin G. ;
DeLuca, David S. ;
Segre, Ayellet V. ;
Sullivan, Timothy J. ;
Young, Taylor R. ;
Gelfand, Ellen T. ;
Trowbridge, Casandra A. ;
Maller, Julian B. ;
Tukiainen, Taru ;
Lek, Monkol ;
Ward, Lucas D. ;
Kheradpour, Pouya ;
Iriarte, Benjamin ;
Meng, Yan ;
Palmer, Cameron D. ;
Esko, Tonu ;
Winckler, Wendy ;
Hirschhorn, Joel N. ;
Kellis, Manolis ;
MacArthur, Daniel G. ;
Getz, Gad ;
Shabalin, Andrey A. ;
Li, Gen ;
Zhou, Yi-Hui ;
Nobel, Andrew B. ;
Rusyn, Ivan ;
Wright, Fred A. ;
Lappalainen, Tuuli ;
Ferreira, Pedro G. ;
Ongen, Halit ;
Rivas, Manuel A. ;
Battle, Alexis ;
Mostafavi, Sara ;
Monlong, Jean ;
Sammeth, Michael ;
Mele, Marta ;
Reverter, Ferran ;
Goldmann, Jakob M. ;
Koller, Daphne ;
Guigo, Roderic ;
McCarthy, Mark I. ;
Dermitzakis, Emmanouil T. ;
Gamazon, Eric R. ;
Im, Hae Kyung ;
Konkashbaev, Anuar ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Flutre, Timothee ;
Wen, Xiaoquan ;
Stephens, Matthew .
SCIENCE, 2015, 348 (6235) :648-660
[9]   An Algorithmic Framework for Predicting Side Effects of Drugs [J].
Atias, Nir ;
Sharan, Roded .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (03) :207-218
[10]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15