ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting

被引:35
作者
Sanchez-Tovar, R. [1 ]
Fernandez-Domene, R. M. [1 ]
Montanes, M. T. [1 ]
Sanz-Marco, A. [1 ]
Garcia-Anton, J. [1 ]
机构
[1] Univ Politecn Valencia, IEC, Dept Ingn Quim & Nucl, ETSI Ind, Camino Vera S-N, E-46022 Valencia, Spain
关键词
HYDRODYNAMIC CONDITIONS; RAMAN-SPECTROSCOPY; SENSITIZED ZNO; TIO2; NANOTUBES; ZINC; PHOTOCATALYST; ANODIZATION; EVOLUTION; GROWTH; ARRAYS;
D O I
10.1039/c6ra03501a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work studies the photoelectrochemical behavior of novel ZnO/ZnS heterostructures obtained by means of anodization in water and glycerol/water/NH4F electrolytes with different Na2S additions under controlled hydrodynamic conditions. For this purpose different techniques such as Field Emission Scanning Electronic Microscopy (FE-SEM) with EDX, Raman spectroscopy and photoelectrochemical water splitting tests under standard AM 1.5 conditions have been carried out. The obtained results showed that the hydrodynamic conditions promoted an ordered nanotubular morphology which facilitates electron-hole separation and consequently, the photoelectrochemical activity for water splitting is enhanced. Additionally, the effect of glycerol in the anodization solutions seems to be beneficial for increasing the dark current photostability.
引用
收藏
页码:30425 / 30435
页数:11
相关论文
共 52 条
[1]   The simple, template free synthesis of a Bi2S3-ZnO heterostructure and its superior photocatalytic activity under UV-A light [J].
Balachandran, Subramanian ;
Swaminathan, Meenakshisundaram .
DALTON TRANSACTIONS, 2013, 42 (15) :5338-5347
[2]   Luminescence properties of Zn nanowires prepared by electrochemical etching [J].
Chang, SS ;
Yoon, SO ;
Park, HJ ;
Sakai, A .
MATERIALS LETTERS, 2002, 53 (06) :432-436
[3]   Raman scattering study of zinc blende and wurtzite ZnS [J].
Cheng, Y. C. ;
Jin, C. Q. ;
Gao, F. ;
Wu, X. L. ;
Zhong, W. ;
Li, S. H. ;
Chu, Paul K. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (12)
[4]   Temperature dependence of raman scattering in ZnO [J].
Cusco, Ramon ;
Alarcon-Llado, Esther ;
Ibanez, Jordi ;
Artus, Luis ;
Jimenez, Juan ;
Wang, Buguo ;
Callahan, Michael J. .
PHYSICAL REVIEW B, 2007, 75 (16)
[5]   TiO2 photocatalysis and related surface phenomena [J].
Fujishima, Akira ;
Zhang, Xintong ;
Tryk, Donald A. .
SURFACE SCIENCE REPORTS, 2008, 63 (12) :515-582
[6]   Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures [J].
Ghicov, Andrei ;
Schmuki, Patrik .
CHEMICAL COMMUNICATIONS, 2009, (20) :2791-2808
[7]   ZnS/ZnO heterojunction as photoelectrode: Type H band alignment towards enhanced photoelectrochemical performance [J].
Guo, Penghui ;
Jiang, Jiangang ;
Shen, Shaohua ;
Guo, Liejin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (29) :13097-13103
[8]   High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays [J].
Han, Jianhua ;
Liu, Zhifeng ;
Guo, Keying ;
Wang, Bo ;
Zhang, Xueqi ;
Hong, Tiantian .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 163 :179-188
[9]   Preparation and properties of ZnO nanostructures by electrochemical anodization method [J].
He, Shuanghu ;
Zheng, Maojun ;
Yao, Lujun ;
Yuan, Xiaoliang ;
Li, Mei ;
Ma, Li ;
Shen, Wenzhong .
APPLIED SURFACE SCIENCE, 2010, 256 (08) :2557-2562
[10]   Towards a highly efficient simulated sunlight driven photocatalyst: a case of heterostructured ZnO/ZnS hybrid structure [J].
Jia, Weina ;
Jia, Boxiang ;
Qu, Fengyu ;
Wu, Xiang .
DALTON TRANSACTIONS, 2013, 42 (39) :14178-14187