Microarray analysis of transcriptional responses to salt and drought stress in Arabidopsis thaliana

被引:25
作者
Ghorbani, Razieh [1 ]
Alemzadeh, Abbas [1 ]
Razi, Hooman [1 ]
机构
[1] Shiraz Univ, Sch Agr, Dept Crop Prod & Plant Breeding, Shiraz, Iran
关键词
Agriculture; Plant biology; Ecology; Genetics; Agronomy; Horticulture; Lagenaria siceraria; Cucurbits; Harvest time; Vivipary; Seed maturation; Yield; Arabidopsis; Meta-analysis; Transcriptomics; Transcription factors; ZINC-FINGER PROTEINS; FUNCTIONAL-ANALYSIS; MOLECULAR CHARACTERIZATION; AELUROPUS-LITTORALIS; GENE-EXPRESSION; REACTIVE OXYGEN; WATER-STRESS; DNA-BINDING; TOLERANCE; DREB2A;
D O I
10.1016/j.heliyon.2019.e02614
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microarray expression profile analysis is a useful approach to increase our knowledge about genes involved in regulatory networks and signal transduction pathways related to abiotic stress tolerance. Salt and drought, as two important abiotic stresses, adversely affect plant productivity in the world every year. To understand stress response mechanisms and identify genes and proteins which play critical roles in these mechanisms, the study of individual genes and proteins cannot be considered as an effective approach. On the other hand, the availability of new global data provides us an effective way to shed some light on the central role of molecules involved in stress response mechanisms in the plant. A meta-analysis of salt and drought stress responses was carried out using 38 samples of different experiments from leaves and roots of Arabidopsis plants exposed to drought and salt stresses. We figured out the number of differentially expressed genes (DEGs) was higher in roots under both stresses. Also, we found that the number of common DEGs under both stresses was more in roots and also the number of common DEGs in both tissues under salt stress was more than drought stress. The highest percent of DEGs was related to cell and cell part (about 87%). Around 9% and 7% of DEGs in roots and leaves encoded transcription factors, respectively. Network analysis revealed that three transcription factor families HSF, AP2/ERF and C2H2, may have critical roles in salt and drought stress response mechanisms in Arabidopsis and some proteins like STZ may be introduced as a new candidate gene for enhancing salt and drought tolerance in crop plants.
引用
收藏
页数:10
相关论文
共 67 条
[1]   Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. [J].
Abogadallah, Gaber M. ;
Nada, Reham M. ;
Malinowski, Robert ;
Quick, Paul .
PLANTA, 2011, 233 (06) :1265-1276
[2]   Role of DREB transcription factors in abiotic and biotic stress tolerance in plants [J].
Agarwal, Pradeep K. ;
Agarwal, Parinita ;
Reddy, M. K. ;
Sopory, Sudhir K. .
PLANT CELL REPORTS, 2006, 25 (12) :1263-1274
[3]   Environmental perception avenues: the interaction of cytokinin and environmental response pathways [J].
Argueso, Cristiana T. ;
Ferreira, Fernando J. ;
Kieber, Joseph J. .
PLANT CELL AND ENVIRONMENT, 2009, 32 (09) :1147-1160
[4]   Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato [J].
Ashrafi-Dehkordi, Elham ;
Alemzadeh, Abbas ;
Tanaka, Nobukazu ;
Razi, Hooman .
PEERJ, 2018, 6
[5]   Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study [J].
Balan, Bipin ;
Marra, Francesco Paolo ;
Caruso, Tiziano ;
Martinelli, Federico .
SCIENTIFIC REPORTS, 2018, 8
[6]   Identification of Cytokinin-Responsive Genes Using Microarray Meta-Analysis and RNA-Seq in Arabidopsis [J].
Bhargava, Apurva ;
Clabaugh, Ivory ;
To, Jenn P. ;
Maxwell, Bridey B. ;
Chiang, Yi-Hsuan ;
Schaller, G. Eric ;
Loraine, Ann ;
Kieber, Joseph J. .
PLANT PHYSIOLOGY, 2013, 162 (01) :272-294
[7]   ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation [J].
Bolt, Sylvia ;
Zuther, Ellen ;
Zintl, Stefanie ;
Hincha, Dirk K. ;
Schmuelling, Thomas .
PLANT CELL AND ENVIRONMENT, 2017, 40 (01) :108-120
[8]  
Chai WW, 2019, FUNCT PLANT BIOL, V46, P670, DOI [10.1071/FP18295, 10.1071/fp18295]
[9]   Networks of transcription factors with roles in environmental stress response [J].
Chen, WQJ ;
Zhu, T .
TRENDS IN PLANT SCIENCE, 2004, 9 (12) :591-596
[10]   The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis [J].
Davletova, S ;
Schlauch, K ;
Coutu, J ;
Mittler, R .
PLANT PHYSIOLOGY, 2005, 139 (02) :847-856