Microporous novolac-derived carbon beads/sulfur hybrid cathode for lithium-sulfur batteries

被引:30
作者
Choudhury, Soumyadip [1 ]
Kruener, Benjamin [1 ,2 ]
Massuti-Ballester, Pau [2 ]
Tolosa, Aura [1 ,2 ]
Prehal, Christian [3 ]
Grobelsek, Ingrid [1 ]
Paris, Oskar [3 ]
Borchardt, Lars [4 ]
Presser, Volker [1 ,2 ]
机构
[1] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany
[2] Saarland Univ, Dept Mat Sci & Engn, D-66123 Saarbrucken, Germany
[3] Univ Leoben, Inst Phys, A-8700 Leoben, Austria
[4] Tech Univ Dresden, Dept Inorgan Chem, D-01069 Dresden, Germany
关键词
Porous carbon; Activation; Hybrid material; Lithium-sulfur batteries; AIR BATTERIES; POROUS CARBONS; ENERGY; SUPERCAPACITORS; CONFINEMENT; COMPOSITES; SCATTERING; PROGRESS; SORPTION; PROMISE;
D O I
10.1016/j.jpowsour.2017.05.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novolac-derived nanoporous carbon beads were used as conductive matrix for lithium-sulfur battery cathodes. We employed a facile self-emulsifying synthesis to obtain sub-micrometer novolac-derived carbon beads with nanopores. After pyrolysis, the carbon beads showed already a specific surface area of 640 m(2) g(-1) which was increased to 2080 m(2) g(-1) after physical activation. The non-activated and the activated carbon beads represent nanoporous carbon with a medium and a high surface area, respectively. This allows us to assess the influence of the porosity on the electrochemical performance of lithium-sulfur battery cathodes. The carbon/sulfur hybrids were obtained from two different approaches of sulfur infiltration: melt-infusion of sulfur (annealing) and in situ formation of sulfur from sodium thiosulfate. The best performance (similar to 880 mAh g(sulfur)(-1) at low charge rate; 5th cycle) and high performance stability (> 600 mAh g(sulfur) (-1) after 100 cycles) were found for the activated carbon beads when using melt infusion of sulfur. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:198 / 208
页数:11
相关论文
共 55 条
[41]   Development of a lithium air rechargeable battery [J].
Stevens, Philippe ;
Toussaint, Gwenaelle ;
Caillon, Georges ;
Viaud, Patrick ;
Vinatier, Philippe ;
Cantau, Christophe ;
Fichet, Odile ;
Sarrazin, Christian ;
Mallouki, Mohamed .
METAL/AIR AND METAL/WATER BATTERIES, 2010, 28 (32) :1-12
[42]  
Sun, 2017, CHEM SOC REV
[43]   Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries [J].
Tao, Xinyong ;
Chen, Xiaorong ;
Xia, Yang ;
Huang, Hui ;
Gan, Yongping ;
Wu, Rui ;
Chen, Feng ;
Zhang, Wenkui .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (10) :3295-3301
[44]   Molecular level models for CO2 sorption in nanopores [J].
Vishnyakov, A ;
Ravikovitch, PI ;
Neimark, AV .
LANGMUIR, 1999, 15 (25) :8736-8742
[45]   Preparation of a graphitic N-doped multi-walled carbon nanotube composite for lithium-sulfur batteries with long-life and high specific capacity [J].
Wang, Chunli ;
Zhang, Feifei ;
Wang, Xuxu ;
Huang, Gang ;
Yuan, Dongxia ;
Yin, Dongming ;
Cheng, Yong ;
Wang, Limin .
RSC ADVANCES, 2016, 6 (80) :76568-76574
[47]   Graphitization as a Universal Tool to Tailor the Potential-Dependent Capacitance of Carbon Supercapacitors [J].
Weingarth, Daniel ;
Zeiger, Marco ;
Jaeckel, Nicolas ;
Aslan, Mesut ;
Feng, Guang ;
Presser, Volker .
ADVANCED ENERGY MATERIALS, 2014, 4 (13)
[48]   Lithium sulfur batteries, a mechanistic review [J].
Wild, M. ;
O'Neill, L. ;
Zhang, T. ;
Purkayastha, R. ;
Minton, G. ;
Marinescu, M. ;
Offer, G. J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (12) :3477-3494
[49]   Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries [J].
Xin, Sen ;
Gu, Lin ;
Zhao, Na-Hong ;
Yin, Ya-Xia ;
Zhou, Long-Jie ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (45) :18510-18513
[50]   Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement [J].
Xu, M. ;
Ivey, D. G. ;
Xie, Z. ;
Qu, W. .
JOURNAL OF POWER SOURCES, 2015, 283 :358-371