Multi-atlas pancreas segmentation: Atlas selection based on vessel structure

被引:69
作者
Karasawa, Ken'ichi [1 ]
Oda, Masahiro [1 ]
Kitasaka, Takayuki [2 ]
Misawa, Kazunari [3 ]
Fujiwara, Michitaka [4 ]
Chu, Chengwen [5 ]
Zheng, Guoyan [5 ]
Rueckert, Daniel [6 ]
Mori, Kensaku [1 ,7 ]
机构
[1] Nagoya Univ, Grad Sch Informat Sci, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
[2] Aichi Inst Technol, Sch Informat Sci, Yagusa Cho, Toyota, Aichi 4700356, Japan
[3] Aichi Canc Ctr, Chikusa Ku, Nagoya, Aichi 4648681, Japan
[4] Nagoya Univ, Grad Sch Med, Showa Ku, Tsurumai Cho, Nagoya, Aichi 4668550, Japan
[5] Univ Bern, ISTB, Stauffacherstr 78, CH-3014 Bern, Switzerland
[6] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[7] Nagoya Univ, Informat & Communicat, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
关键词
Multi-atlas; Pancreas segmentation; Atlas selection; Vessel structure; CT image; ABDOMINAL CT IMAGES; ENERGY MINIMIZATION; MR-IMAGES; REGISTRATION; TOMOGRAPHY; ALGORITHM; MAXIMUM; ORGANS; MODEL;
D O I
10.1016/j.media.2017.03.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 28
页数:11
相关论文
共 40 条
[1]   Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy [J].
Aljabar, P. ;
Heckemann, R. A. ;
Hammers, A. ;
Hajnal, J. V. ;
Rueckert, D. .
NEUROIMAGE, 2009, 46 (03) :726-738
[2]  
[Anonymous], [No title captured]
[3]   Real-time computed tomography-based augmented reality for natural orifice transluminal endoscopic surgery navigation [J].
Azagury, D. E. ;
Ryou, M. ;
Shaikh, S. N. ;
Estepar, R. San Jose ;
Lengyel, B. I. ;
Jagadeesan, J. ;
Vosburgh, K. G. ;
Thompson, C. C. .
BRITISH JOURNAL OF SURGERY, 2012, 99 (09) :1246-1253
[4]   Multi-atlas segmentation with augmented features for cardiac MR images [J].
Bai, Wenjia ;
Shi, Wenzhe ;
Ledig, Christian ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :98-109
[5]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[6]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[7]  
Bracewell R., 1965, FOURIER TRANSFORM IT, P243
[8]  
Chu CW, 2013, LECT NOTES COMPUT SC, V8150, P165, DOI 10.1007/978-3-642-40763-5_21
[9]   A Patch-Based Approach for the Segmentation of Pathologies: Application to Glioma Labelling [J].
Cordier, Nicolas ;
Delingette, Herve ;
Ayache, Nicholas .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (04) :1066-1076
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38