An elementary proof of the blow-up for semilinear wave equation in high space dimensions

被引:41
作者
Jiao, HL [1 ]
Zhou, ZF
机构
[1] Ferris State Univ, Dept Math, Big Rapids, MI 49307 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
D O I
10.1016/S0022-0396(02)00041-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the blow-up of solutions to u(u) - Au Deltau = \u\(p) in high dimensions for n greater than or equal to 4 and 1 < p < p(0)(n), where p(0)(n) is a critical exponent. We proved that the solutions blow up in finite time by estimating the solutions near the wave front using elementary inequalities. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1992, J PARTIAL DIFFER EQ
[2]   Weighted Strichartz estimates and global existence for semilinear wave equations [J].
Georgiev, V ;
Lindblad, H ;
Sogge, CD .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (06) :1291-1319
[3]   FINITE-TIME BLOW-UP FOR SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1981, 177 (03) :323-340
[4]   EXISTENCE IN THE LARGE FOR CLASS U = F (U) IN 2 SPACE DIMENSIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (02) :233-261
[5]   REGULARITY FOR THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (06) :749-774
[6]   BLOW-UP FOR QUASILINEAR WAVE-EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (01) :29-51
[8]  
JOHN F, 2715 U WISC MATH RES
[9]  
John F., 1990, NONLINEAR WAVE EQUAT
[10]   GLOBAL, SMALL AMPLITUDE SOLUTIONS TO NON-LINEAR EVOLUTION-EQUATIONS [J].
KLAINERMAN, S ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (01) :133-141