Simple accurate model-based phase diversity phase retrieval algorithm for wavefront sensing in high-resolution optical imaging systems

被引:1
作者
Qin, Shun [1 ]
Zhang, Yongbing [2 ]
Wang, Haoqian [2 ]
Chan, Wai Kin [1 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Tsinghua Berkeley Shenzhen Inst, Shenzhen, Peoples R China
[2] Tsinghua Univ, Grad Sch Shenzhen, Tsinghua Shenzhen Int Grad Sch, Shenzhen, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
optical images; wavefront sensors; aberrations; least squares approximations; Zernike polynomials; nonlinear programming; light diffraction; image resolution; high-resolution optical imaging systems; high dynamic range; least-squares-based nonlinear optimisation method; multiple phase-diversity images; model-based phase diversity phase retrieval algorithm; diffraction-limited imaging; wavefront sensing; Lederberg-Marquardt algorithm; aberration; Zernike coefficients; SPACE; MICROSCOPY;
D O I
10.1049/iet-ipr.2020.1075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In optical imaging systems, the aberration is an important factor that impedes realising diffraction-limited imaging. Accurate wavefront sensing and control play important role in modern high-resolution optical imaging systems nowadays. In this study, a simple model-based phase retrieval algorithm is proposed for accurate efficient wavefront sensing with high dynamic range. In the authors' algorithm, a wavefront is represented by the Zernike polynomials, and the Zernike coefficients are solved by the least-squares-based non-linear optimisation method, i.e. the Lederberg-Marquardt algorithm, with multiple phase-diversity images. The numerical results show that the proposed algorithm is capable of retrieving wavefront with a large dynamic range up to seven wavelength and robust to noise. In comparison, the proposed algorithm is more efficient than the existing model-based technique and more accurate than existing Fourier - transformation-based iterative techniques.
引用
收藏
页码:4513 / 4519
页数:7
相关论文
共 38 条
  • [1] Acton D.S., 2006, INT SOC OPTICS PHOTO, p62650R
  • [2] James Webb Space Telescope wavefront sensing and control algorithms
    Acton, DS
    Atcheson, P
    Cermak, M
    Kingsbury, L
    Shi, F
    Redding, DC
    [J]. OPTICAL, INFRARED, AND MILLIMETER SPACE TELESCOPES, PTS 1-3, 2004, 5487 : 887 - 896
  • [3] Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates
    Andersen, Torben B.
    [J]. OPTICS EXPRESS, 2018, 26 (15): : 18878 - 18896
  • [4] Ansuinelli P., 2019, PROC SPIE, V11089
  • [5] Wavefront sensing and control software for a segmented space telescope
    Basinger, SA
    Burns, LA
    Redding, DC
    Shi, F
    Cohen, D
    Green, JJ
    Ohara, CM
    Lowman, AE
    [J]. IR SPACE TELESCOPES AND INSTRUMENTS, PTS 1 AND 2, 2003, 4850 : 362 - 369
  • [6] Nonlinear optimization algorithm for retrieving the full complex pupil function
    Brady, GR
    Fienup, JR
    [J]. OPTICS EXPRESS, 2006, 14 (02): : 474 - 486
  • [7] Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution
    Chapman, HN
    [J]. ULTRAMICROSCOPY, 1996, 66 (3-4) : 153 - 172
  • [8] Phase retrieval algorithm for JWST flight and testbed telescope
    Dean, Bruce H.
    Aronstein, David L.
    Smith, J. Scott
    Shiri, Ron
    Acton, D. Scott
    [J]. SPACE TELESCOPES AND INSTRUMENTATION I: OPTICAL, INFRARED, AND MILLIMETER, PTS 1 AND 2, 2006, 6265
  • [9] Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy
    Descloux, A.
    Grussmayer, K. S.
    Bostan, E.
    Lukes, T.
    Bouwens, A.
    Sharipov, A.
    Geissbuehler, S.
    Mahul-Mellier, A. -L.
    Lashuel, H. A.
    Leutenegger, M.
    Lasser, T.
    [J]. NATURE PHOTONICS, 2018, 12 (03) : 165 - +
  • [10] Fienup C., 1987, IMAGE RECOVERY THEOR, V231, P275