NEW INEQUALITIES FOR THE VOLUME OF THE UNIT BALL IN Rn

被引:6
作者
Ban, Tao [1 ]
Chen, Chao-Ping [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat, Jiaozuo City 454000, Henan Province, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2017年 / 11卷 / 02期
关键词
Volume of the unit n-dimensional ball; gamma function; inequality; GAMMA-FUNCTION;
D O I
10.7153/jmi-11-43
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many interesting monotonicity properties and inequalities for the volume of the unit ball in R-n have been established. The main object of this paper is to establish new inequalities for the volume of the unit ball in R-n
引用
收藏
页码:527 / 542
页数:16
相关论文
共 17 条
[1]   Inequalities for the volume of the unit ball in Rn [J].
Alzer, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) :353-363
[2]  
Alzer H, 2008, MEDITERR J MATH, V5, P395, DOI 10.1007/s00009-008-0158-x
[3]  
Anderson G.D., 1989, EXPO MATH, V7, P97
[4]   A monotoneity property of the gamma function [J].
Anderson, GD ;
Qiu, SL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) :3355-3362
[5]  
[Anonymous], 1969, SPECIAL FUNCTIONS TH
[6]  
[Anonymous], 1972, NBS APPL MATH SERIES
[7]  
Bohm J., 1981, POLYEDERGEOMETRIE N
[8]  
Borgwardt KH, 1987, THE SIMPLEX METHOD
[9]   Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function [J].
Chen, Chao-Ping ;
Paris, Richard B. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 :514-529
[10]  
Chen CP, 2014, MEDITERR J MATH, V11, P299, DOI 10.1007/s00009-013-0340-7