Nonlinear diffraction from high-order Hermite - Gauss beams

被引:7
|
作者
Kalinowski, Ksawery [1 ]
Shapira, Asia [1 ]
Libster-Hershko, Ana [1 ]
Arie, Ady [1 ]
机构
[1] Tel Aviv Univ, Dept Phys Elect, Sch Elect Engn, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
2ND-HARMONIC GENERATION; PHOTONIC CRYSTALS;
D O I
10.1364/OL.40.000013
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate experimentally and theoretically the nonlinearly diffracted second harmonic light from the first-order Hermite-Gauss beam. We investigate the cases of loosely and tightly focused beams in a periodically poled lithium niobate crystal in the temperature range near the birefringent phase matching. Unlike the case of fundamental Gaussian beam, the nonlinear diffracted beam is spatially structured. Its shape depends on the focusing conditions and on the crystal temperature. Furthermore, for the case of tight focusing, the diffracted beam structure depends on the beam's position with respect to the domain wall. (C) 2014 Optical Society of America
引用
收藏
页码:13 / 16
页数:4
相关论文
共 50 条
  • [41] Quantization of Gauss-Hermite and Gauss-Laguerre beams in free space
    Wünsche, A
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (03) : S47 - S59
  • [42] Self-healing of Hermite-Gauss and Ince-Gauss beams
    Aguirre-Olivas, Dilia
    Mellado-Villasenor, Gabriel
    Arrizon, Victor
    Chavez-Cerda, Sabino
    LASER BEAM SHAPING XVI, 2015, 9581
  • [43] HIGH-ORDER ANISOTROPIC DIFFRACTION IN PHOTOREFRACTIVE CRYSTALS
    TEMPLE, DA
    WARDE, C
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1988, 5 (08) : 1800 - 1805
  • [44] HIGH-ORDER NONLINEAR GALERKIN METHODS
    何银年
    李开泰
    Numerical Mathematics A Journal of Chinese Universities(English Series), 1993, (02) : 210 - 214
  • [45] Determination of nonlinear high-order susceptibilities
    Tagiev, ZA
    Kasumova, RJ
    OPTIKA I SPEKTROSKOPIYA, 1996, 80 (06): : 941 - 943
  • [46] High-order nonlinear susceptibilities of helium
    Liu, WC
    PHYSICAL REVIEW A, 1997, 56 (06) : 4938 - 4945
  • [48] High-order nonlinear evolution equations
    Hill, James M., 1600, (45):
  • [49] A nonlinear high-order transformations-based method for high-order tensor completion
    Luo, Linhong
    Tu, Zhihui
    Lu, Jian
    Wang, Chao
    Xu, Chen
    SIGNAL PROCESSING, 2024, 225
  • [50] Generation of one-dimensional high-order Hermite-Gaussian laser beams with large mode volume br
    Zhou, Wang-Zhe
    Li, Xue-Peng
    Yang, Jing
    Yang, Tian-Li
    Wang, Xiao-Jun
    Liu, Bing-Jie
    Wang, Hao-Zhu
    Yang, Jun-Bo
    Peng, Qin-Jun
    ACTA PHYSICA SINICA, 2023, 72 (01)