Three distinct phases of electron heating in an rf-driven atmospheric-pressure plasma jet

被引:2
|
作者
Park, Sanghoo [1 ,2 ]
Yoon, Sung-Young [1 ,3 ]
机构
[1] Inst Plasma Technol, Korea Inst Fus Energy KFE, Gunsan, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Daejeon, South Korea
[3] Samsung Elect, Hwaseong, Gyeonggi Do, South Korea
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2022年 / 31卷 / 05期
关键词
plasma jet; electron density; electron temperature; Thomson scattering; pulsed RF; CAPACITIVE DISCHARGES;
D O I
10.1088/1361-6595/ac6213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Cold plasma jets represent one of the most attractive and versatile plasmas, and active studies on plasma properties such as electron density (n (e)) and temperature (T (e)) have facilitated the development and implementation of plasma jets. Here we demonstrate the temporal evolution of n (e) and T (e) in a radio-frequency (rf)-driven argon plasma jet operating at atmospheric pressure. The plasma jet is driven by 5 MHz sinusoidal rf power modulated by a 50 kHz square pulse with a 75% duty ratio. A 532 nm Nd:YAG laser is applied to the plasma, and laser Thomson scattering measurements are performed using a triple-grating spectrometer coupled to an intensified CCD camera. From this investigation, we find that n (e) and T (e) vary during the pulse repetition period of 20 mu s in the ranges of (2-12) x 10(18) m(-3) and 0.3-6.0 eV, respectively. With respect to the 5 MHz period (200 ns), T (e) varies with the rf oscillating field while n (e) remains constant. Special attention is given to three distinct electron characteristics depending on the pulse phase in the plasma jet-ionizing (on-pulse), stationary and recombining (off-pulse) states. Our measurements will be valuable for related experimental and numerical plasma research and provide further insights into the effect of rf pulsing on the electron kinetics in atmospheric-pressure plasmas.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure rf-driven plasma jet
    Brandenburg, R.
    Ehlbeck, J.
    Stieber, M.
    von Woedtke, T.
    Zeymer, J.
    Schlueter, O.
    Weltmann, K. -D.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2007, 47 (1-2) : 72 - 79
  • [2] The effects of grounded electrode geometry on RF-driven cold atmospheric pressure plasma micro-jet
    Hassanpour, Davood
    Pestehe, Sayyed-Jalal
    JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2020, 14 (04) : 387 - 398
  • [3] RF-driven atmospheric-pressure capillary plasma jet in a He/O2 gas mixture: Multi-diagnostic approach to energy transport
    Winzer, T.
    Steuer, D.
    Schuettler, S.
    Blosczyk, N.
    Benedikt, J.
    Golda, J.
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (18)
  • [4] Helium and oxygen excited states densities in a He-air RF-driven atmospheric pressure plasma jet
    Petrova, Tz. B.
    Boris, D. R.
    Hinshelwood, M.
    Johnson, M. J.
    Gillman, E. D.
    Walton, S. G.
    PHYSICS OF PLASMAS, 2020, 27 (10)
  • [5] Three distinct modes in a cold atmospheric pressure plasma jet
    Walsh, J. L.
    Iza, F.
    Janson, N. B.
    Law, V. J.
    Kong, M. G.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (07)
  • [6] An Investigation of the Control of Electron Energy in the Atmospheric-Pressure Helium Plasma Jet
    Liu, Yadi
    Tan, Zhenyu
    Chen, Xinxian
    Li, Xiaotong
    Wang, Xiaolong
    Zhang, Huimin
    Pan, Jie
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (08) : 2865 - 2880
  • [7] Low Temperature Deposition of Cu Thin Film on Polyimide Using RF-driven Atmospheric Pressure Plasma Jet in Nitrogen Atmosphere
    Zhao, Peng
    Zheng, Wei
    Meng, Yuedong
    Nagatsu, Masaaki
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2013, 26 (04) : 549 - 554
  • [8] A Planar Source of Atmospheric-Pressure Plasma Jet
    Zhdanova, O. S.
    Kuznetsov, V. S.
    Panarin, V. A.
    Skakun, V. S.
    Sosnin, E. A.
    Tarasenko, V. F.
    PLASMA PHYSICS REPORTS, 2018, 44 (01) : 153 - 156
  • [9] A Planar Source of Atmospheric-Pressure Plasma Jet
    O. S. Zhdanova
    V. S. Kuznetsov
    V. A. Panarin
    V. S. Skakun
    E. A. Sosnin
    V. F. Tarasenko
    Plasma Physics Reports, 2018, 44 : 153 - 156
  • [10] Etching materials with an atmospheric-pressure plasma jet
    Jeong, JY
    Babayan, SE
    Tu, VJ
    Park, J
    Henins, I
    Hicks, RF
    Selwyn, GS
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 1998, 7 (03): : 282 - 285