Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO-MgO-Al2O3-SiO2 deposits

被引:88
作者
Zhou, Xin [1 ]
Chen, Tao [1 ]
Yuan, Jieyan [1 ]
Deng, Zhonghua [2 ]
Zhang, Hao [1 ]
Jiang, Jianing [1 ]
Cao, Xueqiang [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, 122 Luoshi Rd, Wuhan 430070, Hubei, Peoples R China
[2] BOE Technol Co Ltd, Mianyang, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
atmospheric plasma spraying; CMAS degradation; nanostructured YSZ coating; HIGH-TEMPERATURE ATTACK; VOLCANIC ASH; CMAS; YTTRIA; DEGRADATION; MECHANISMS; BEHAVIOR; INFILTRATION; RESISTANT; CORROSION;
D O I
10.1111/jace.16498
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, nanostructured thermal barrier coatings have received considerable attention because of some superior properties in comparison with their conventional counterpart. In this study, nanostructured 8 wt% yttria-stabilized zirconia (n-YSZ) coatings were deposited by atmospheric plasma spraying, and the degradation behavior caused by molten calcium-magnesium-aluminon-silicate (CMAS) attack was investigated. Results showed that the thermo-chemical reaction product between CMAS and YSZ (both powders and coatings) is different with the change of CMAS content. At low CMAS concentration, a cubic phase is generated by the diffusion of Ca into YSZ grains. As compared to the conventional YSZ, less C-ZrO(2 )is detected for n-YSZ. When CMAS reaches a certain concentration (eg 15 mg/cm(2)), disruptive phase transformation from tetragonal to monoclinic will occur and the reaction is more readily for n-YSZ. Two different chemical reaction mechanisms governing the CMAS content effect were proposed. It should be noted that the nanozone in the coatings plays an important role in the CMAS degradation process, which enhances CMAS infiltration rate and accelerates the chemical reaction, leading to a poor CMAS resistance of the nanostructured coating than that of the conventional counterpart.
引用
收藏
页码:6357 / 6371
页数:15
相关论文
共 53 条
[1]   Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits [J].
Aygun, Aysegul ;
Vasiliev, Alexander L. ;
Padture, Nitin P. ;
Ma, Xinqing .
ACTA MATERIALIA, 2007, 55 (20) :6734-6745
[2]   High performance nanostructured ZrO2 based thermal barrier coatings deposited by high efficiency supersonic plasma spraying [J].
Bai, Y. ;
Han, Z. H. ;
Li, H. Q. ;
Xu, C. ;
Xu, Y. L. ;
Wang, Z. ;
Ding, C. H. ;
Yang, J. F. .
APPLIED SURFACE SCIENCE, 2011, 257 (16) :7210-7216
[3]   Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings [J].
Borom, MP ;
Johnson, CA ;
Peluso, LA .
SURFACE & COATINGS TECHNOLOGY, 1996, 86 (1-3) :116-126
[4]   Ceramic materials for thermal barrier coatings [J].
Cao, XQ ;
Vassen, R ;
Stoever, D .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) :1-10
[5]   Molten salt attack on multilayer and functionally-graded YSZ coatings [J].
Carpio, Pablo ;
Dolores Salvador, M. ;
Borrell, Amparo ;
Navarro, Lucia ;
Sanchez, Enrique .
CERAMICS INTERNATIONAL, 2018, 44 (11) :12634-12641
[6]   Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings [J].
Chen, X .
SURFACE & COATINGS TECHNOLOGY, 2006, 200 (11) :3418-3427
[7]   Thermal-barrier coatings for more efficient gas-turbine engines [J].
Clarke, David R. ;
Oechsner, Matthias ;
Padture, Nitin P. .
MRS BULLETIN, 2012, 37 (10) :891-902
[8]   Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects [J].
Darolia, R. .
INTERNATIONAL MATERIALS REVIEWS, 2013, 58 (06) :315-348
[9]   Jet Engine Coatings for Resisting Volcanic Ash Damage [J].
Drexler, Julie M. ;
Gledhill, Andrew D. ;
Shinoda, Kentaro ;
Vasiliev, Alexander L. ;
Reddy, Kongara M. ;
Sampath, Sanjay ;
Padture, Nitin P. .
ADVANCED MATERIALS, 2011, 23 (21) :2419-+
[10]   Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits [J].
Drexler, Julie M. ;
Shinoda, Kentaro ;
Ortiz, Angel L. ;
Li, Dongsheng ;
Vasiliev, Alexander L. ;
Gledhill, Andrew D. ;
Sampath, Sanjay ;
Padture, Nitin P. .
ACTA MATERIALIA, 2010, 58 (20) :6835-6844