Lifts of automorphisms of vertex operator algebras in simple current extensions

被引:15
作者
Shimakura, Hiroki [1 ]
机构
[1] Hokkaido Univ, Dept Math, Kita Ku, Sapporo, Hokkaido 0600810, Japan
关键词
FUSION RULES; V-L(+); CODES;
D O I
10.1007/s00209-006-0080-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study isomorphisms between simple current extensions of a simple VOA. For example, we classify the isomorphism classes of simple current extensions of the VOAs V-root 2E8(+) and V-Lambda 16(+), where Lambda(16) is the Barnes-Wall lattice of rank 16. Moreover, we consider the same simple current extension and describe the normalizer of the abelian automorphism group associated with this extension. In particular, we regard the moonshine module V(sic) as simple current extensions of five subVOAs V-L(+) for 2-elementary totally even lattices L, and describe corresponding five normalizers of elementary abelian 2-group in the automorphism group of V in terms of V-L(+). By using this description, we show that three of them form a Monster amalgam.
引用
收藏
页码:491 / 508
页数:18
相关论文
共 22 条
[1]   Fusion rules for the vertex operator algebras M(1)+ and VL+ [J].
Abe, T ;
Dong, CY ;
Li, HS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (01) :171-219
[2]   Classification of irreducible modules for the vertex operator algebra VL+:: general case [J].
Abe, T ;
Dong, CY .
JOURNAL OF ALGEBRA, 2004, 273 (02) :657-685
[3]   Fusion rules for the charge conjugation orbifold [J].
Abe, T .
JOURNAL OF ALGEBRA, 2001, 242 (02) :624-655
[5]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[6]  
Conway J. H., 1999, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V3rd
[7]  
CONWAY JS, 1985, ALA AGR EXP STA BULL, P1
[8]  
Dong CY, 2004, INT MATH RES NOTICES, V2004, P2989
[9]   On quantum Galois theory [J].
Dong, CY ;
Mason, G .
DUKE MATHEMATICAL JOURNAL, 1997, 86 (02) :305-321
[10]   Framed vertex operator algebras, codes and the moonshine module [J].
Dong, CY ;
Griess, RL ;
Hohn, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 193 (02) :407-448