Fe (III) reduction strategies of dissimilatory iron reducing bacteria

被引:93
作者
Esther, Jacintha [1 ,2 ]
Sukla, Lala Behari [1 ,2 ]
Pradhan, Nilotpala [1 ,2 ]
Panda, Sandeep [1 ]
机构
[1] CSIR Inst Minerals & Mat Technol, Bhubaneswar 751013, Odisha, India
[2] AcSIR, New Delhi, India
关键词
Dissimilatory Iron Reducing Bacteria; Shewanella; Geobacter; Metabolism; Applications; SHEWANELLA-ONEIDENSIS MR-1; EXTRACELLULAR ELECTRON-TRANSFER; OUTER-MEMBRANE CYTOCHROMES; MICROBIAL FUEL-CELLS; C-TYPE CYTOCHROME; CRYSTALLINE IRON(III) OXIDES; INSOLUBLE FE(III) OXIDE; FERMENTANS GEN. NOV; SUBTERRANEUS SP NOV; GEOBACTER-SULFURREDUCENS;
D O I
10.1007/s11814-014-0286-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Advances in applied and industrial microbial biotechnology have opened up many new avenues for application of several microorganisms. A group of certain metal reducers such as the dissimilatory iron reducing microorganisms possess an inherent potential to reduce oxidized metals under strict anaerobic/facultative anaerobic condition, thereby opening possibilities to combat environmental pollution. This unique property has invited researchers towards understanding the metabolic regulatory pathways that enables the microbes to thrive under extreme environmental conditions. Currently, dissimilatory iron reducing bacteria (DIRB) is in the focus of researchers to elucidate the specific mechanisms responsible for microbial metal reduction. The recent advances towards understanding the metabolism of iron reduction in Shewanella and Geobacter, the model DIRB has been covered in this review. It is believed that the metabolic insights into the Fe (III) reduction systems of the model DIRB; Shewanella and Geobacter (as discussed in the review) can be a basis for metabolic engineering to provide improved practical applications. With the advancement of our existing knowledge on the metabolic processes of the model iron reducers, applications ranging from laboratory to field scale practices can be carried out. DIRB has gained immense interest for its application in the field of bioremediation, electrobiosynthesis, and bioelectronics in this decade. It can therefore be anticipated that the forthcoming years will see more applications of microbial iron reducers based on the existing as well as advanced metabolic informations available in open source literature.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 199 条
[51]   Bioleaching of iron from kaolin using Fe(III)-reducing bacteria with various carbon nitrogen sources [J].
Guo, Min-rong ;
Lin, Yu-man ;
Xu, Xu-ping ;
Chen, Zu-liang .
APPLIED CLAY SCIENCE, 2010, 48 (03) :379-383
[52]   Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II) [J].
Hansel, CM ;
Benner, SG ;
Nico, P ;
Fendorf, S .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (15) :3217-3229
[53]   Characterization of Shewanella oneidensis MtrC:: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors [J].
Hartshorne, Robert S. ;
Jepson, Brian N. ;
Clarke, Tom A. ;
Field, Sarah J. ;
Fredrickson, Jim ;
Zachara, John ;
Shi, Liang ;
Butt, Julea N. ;
Richardson, David J. .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2007, 12 (07) :1083-1094
[54]   Characterization of an electron conduit between bacteria and the extracellular environment [J].
Hartshorne, Robert S. ;
Reardon, Catherine L. ;
Ross, Daniel ;
Nuester, Jochen ;
Clarke, Thomas A. ;
Gates, Andrew J. ;
Mills, Paul C. ;
Fredrickson, Jim K. ;
Zachara, John M. ;
Shi, Liang ;
Beliaev, Alex S. ;
Marshall, Matthew J. ;
Tien, Ming ;
Brantley, Susan ;
Butt, Julea N. ;
Richardson, David J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (52) :22169-22174
[55]   Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis [J].
Heidelberg, JF ;
Paulsen, IT ;
Nelson, KE ;
Gaidos, EJ ;
Nelson, WC ;
Read, TD ;
Eisen, JA ;
Seshadri, R ;
Ward, N ;
Methe, B ;
Clayton, RA ;
Meyer, T ;
Tsapin, A ;
Scott, J ;
Beanan, M ;
Brinkac, L ;
Daugherty, S ;
DeBoy, RT ;
Dodson, RJ ;
Durkin, AS ;
Haft, DH ;
Kolonay, JF ;
Madupu, R ;
Peterson, JD ;
Umayam, LA ;
White, O ;
Wolf, AM ;
Vamathevan, J ;
Weidman, J ;
Impraim, M ;
Lee, K ;
Berry, K ;
Lee, C ;
Mueller, J ;
Khouri, H ;
Gill, J ;
Utterback, TR ;
McDonald, LA ;
Feldblyum, TV ;
Smith, HO ;
Venter, JC ;
Nealson, KH ;
Fraser, CM .
NATURE BIOTECHNOLOGY, 2002, 20 (11) :1118-1123
[56]   Shewanella-mediated synthesis of selenium nanowires and nanoribbons [J].
Ho, Cuong Tu ;
Kim, Jeong Won ;
Kim, Won Bae ;
Song, Kyung ;
Kanaly, Robert A. ;
Sadowsky, Michael J. ;
Hur, Hor-Gil .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (28) :5899-5905
[57]   Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes [J].
Holmes, Dawn E. ;
Mester, Tonde ;
O'Neil, Regina A. ;
Perpetua, Lorrie A. ;
Larrahondo, M. Juliana ;
Glaven, Richard ;
Sharma, Manju L. ;
Ward, Joy E. ;
Nevin, Kelly P. ;
Lovley, Derek R. .
MICROBIOLOGY-SGM, 2008, 154 :1422-1435
[58]   Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments [J].
Holmes, DE ;
Bond, DR ;
O'Neill, RA ;
Reimers, CE ;
Tender, LR ;
Lovley, DR .
MICROBIAL ECOLOGY, 2004, 48 (02) :178-190
[59]   Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells [J].
Huang, Liping ;
Li, Tianchi ;
Liu, Chuan ;
Quan, Xie ;
Chen, Lijie ;
Wang, Aijie ;
Chen, Guohua .
BIORESOURCE TECHNOLOGY, 2013, 128 :539-546
[60]  
Hyun MS, 1999, J MICROBIOL, V37, P206