Further results on error estimators for local refinement with first-order system least squares (FOSLS)

被引:5
|
作者
Manteuffel, Thomas [1 ]
McCormick, Steven [1 ]
Nolting, Joshua [1 ]
Ruge, John [1 ]
Sanders, Geoff [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80302 USA
基金
美国国家科学基金会;
关键词
convergence; finite element; FOSLS; adaptive local refinement; harmonic; functional;
D O I
10.1002/nla.696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Adaptive local refinement (ALR) can substantially improve the performance of simulations that involve numerical solution of partial differential equations. In fact, local refinement capabilities are one of the attributes of first-order system least squares (FOSLS) in that it provides an inexpensive but effective a posteriori local error bound that accurately identifies regions that require further refinement. Previous theory on FOSLS established the effectiveness of its local error estimator, but only under the assumption that the local region is not too 'thin'. This paper extends this theory to the case of a rectangular domain by showing that the estimator's effectiveness holds even for certain 'thin' local regions. Further, we prove that when the approximation satisfies a local saturation property, convergence of a FOSLS ALR scheme is guaranteed. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:387 / 413
页数:27
相关论文
共 50 条
  • [1] Hybrid First-Order System Least Squares (FOSLS/LL*)
    Liu, K.
    Manteuffel, T.
    McCormick, S.
    Ruge, J.
    Tang, L.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 39 - 43
  • [2] First-order system least squares (FOSLS) for convection-diffusion problems: Numerical results
    Fiard, JM
    Manteuffel, TA
    McCormick, SF
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06): : 1958 - 1979
  • [3] First-order system least-squares (FOSLS) for modeling blood flow
    Heys, J. J.
    DeGroff, C. G.
    Manteuffel, T. A.
    McCormick, S. F.
    MEDICAL ENGINEERING & PHYSICS, 2006, 28 (06) : 495 - 503
  • [4] First-order system least squares (FOSLS) for coupled fluid-elastic problems
    Heys, JJ
    Manteuffel, TA
    McCormick, SF
    Ruge, JW
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (02) : 560 - 575
  • [5] First-order system least squares (FOSLS) for spatial linear elasticity: Pure traction
    Kim, SD
    Manteuffel, TA
    McCormick, SF
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) : 1454 - 1482
  • [6] First-order system least squares (fosls) for planar linear elasticity: Pure traction problem
    Cai, Zhiqiang
    Manteuffel, Thomas A.
    Mccormick, Stephen F.
    Parter, Seymour V.
    SIAM Journal on Numerical Analysis, 35 (01): : 320 - 335
  • [7] First-order system least squares for the Stokes and linear elasticity equations: Further results
    Cai, Z
    Lee, CO
    Manteuffel, TA
    McCormick, SF
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05): : 1728 - 1739
  • [8] First-order system least squares (FOSLS) for planar linear elasticity: Pure traction problem
    Cai, ZQ
    Manteuffel, TA
    McCormick, SF
    Parter, SV
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 320 - 335
  • [9] EFFICIENCY BASED ADAPTIVE LOCAL REFINEMENT FOR FIRST-ORDER SYSTEM LEAST-SQUARES FORMULATIONS
    Adler, J. H.
    Manteuffel, T. A.
    McCormick, S. F.
    Nolting, J. W.
    Ruge, J. W.
    Tang, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (01): : 1 - 24
  • [10] Weighted-norm first-order system least squares (FOSLS) for problems with corner singularities
    Lee, E.
    Manteuffel, T. A.
    Westphal, C. R.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 1974 - 1996