Numerical simulation of premixed combustion using the modified dynamic thickened flame model coupled with multi-step reaction mechanism

被引:27
|
作者
Guo, Shilong [1 ]
Wang, Jinhua [1 ]
Wei, Xutao [1 ]
Yu, Senbin [2 ]
Zhang, Meng [1 ]
Huang, Zuohua [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
[2] Lund Univ, Div Fluid Mech, S-22100 Lund, Sweden
基金
中国国家自然科学基金;
关键词
Premixed flame; Large Eddy Simulation; Dynamic thickened flame model; Multi-step reaction mechanism; LARGE-EDDY SIMULATIONS; TURBULENT COMBUSTION; WRINKLING MODEL; LES; FORMULATION; REGIME; ILDM; FLOW;
D O I
10.1016/j.fuel.2018.06.074
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thickened flame (TF) model is one of the effective methods to resolve the flame front in turbulent premixed combustion modeling. The multi-step reaction mechanism is becoming increasingly important for combustion simulations such as pollutant formation, ignition and extinction. The effect of TF model on flame structures when coupling with multi-step reaction mechanism was investigated. The simulation results show that, no matter in laminar or turbulent condition, the global TF model coupling with multi-step reaction mechanism results in an incomplete combustion, which is mainly due to the enhanced species diffusion. Although Durand and Polifke's dynamic thickened flame (DTF) sensor performs well for predicting laminar flame structure when coupling with multi-step reaction mechanism, it underestimates the effective thickening factor. In turbulent premixed flame simulation, the underestimated thickening factor leads to a faster local fuel consumption speed because of the over-predicted sub-grid flame wrinkling factor. A modified DTF sensor suitable for multi-step reaction mechanism is proposed. This sensor using the hyperbolic tangent function of progress variable to calculate thickening factor dynamically. It ensures that both the preheated and reaction zones are thickened effectively. The sub-grid wrinkling factor is hence estimated corresponding to the calculated flame thickness. Results of 1D laminar and 3D turbulent flame show that this method performs well for predicting both burned gas temperature and species concentration in burnt gas, which is important for predicting emissions.
引用
收藏
页码:346 / 353
页数:8
相关论文
共 50 条
  • [1] NUMERICAL SIMULATION OF TURBULENT PREMIXED FLAMES USING THICKENED FLAME MODEL
    Xia, Yu
    Newale, Ashish
    Yadav, Rakesh
    Verma, Ishan
    Bessette, Didier
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 3A, 2023,
  • [2] Multiple mapping conditioning coupled with an artificially thickened flame model for turbulent premixed combustion
    Straub, Carmen
    Kronenburg, Andreas
    Stein, Oliver T.
    Kuenne, Guido
    Janicka, Johannes
    Barlow, Robert S.
    Geyer, Dirk
    COMBUSTION AND FLAME, 2018, 196 : 325 - 336
  • [3] Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion
    Wang, G.
    Boileau, M.
    Veynante, D.
    COMBUSTION AND FLAME, 2011, 158 (11) : 2199 - 2213
  • [4] Large eddy simulation of turbulent premixed piloted flame using artificial thickened flame model coupled with tabulated chemistry
    Zhou YU
    Hongda ZHANG
    Taohong YE
    Minming ZHU
    Applied Mathematics and Mechanics(English Edition), 2018, 39 (09) : 1277 - 1294
  • [5] Large eddy simulation of turbulent premixed piloted flame using artificial thickened flame model coupled with tabulated chemistry
    Yu, Zhou
    Zhang, Hongda
    Ye, Taohong
    Zhu, Minming
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2018, 39 (09) : 1277 - 1294
  • [6] Numerical investigation of lean-premixed turbulent flame using combustion LES and thickened flame approach
    Hosseinzadeh, A.
    Schwarz, A.
    Sadiki, A.
    Janicka, J.
    THMT-12. PROCEEDINGS OF THE SEVENTH INTERNATIONAL SYMPOSIUM ON TURBULENCE, HEAT AND MASS TRANSFER, 2012, : 1930 - 1933
  • [7] Large eddy simulation of turbulent premixed piloted flame using artificial thickened flame model coupled with tabulated chemistry
    Zhou Yu
    Hongda Zhang
    Taohong Ye
    Minming Zhu
    Applied Mathematics and Mechanics, 2018, 39 : 1277 - 1294
  • [8] Numerical simulation of premixed propane/air flame propagation using a dynamically thickened flame approach
    Xiao, Huahua
    Mao, Zhanli
    An, Weiguang
    Wang, Qingsong
    Sun, Jinhua
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 1574 - 1578
  • [9] LARGE EDDY SIMULATION OF A PREMIXED BUNSEN FLAME USING A MODIFIED THICKENED-FLAME MODEL AT TWO REYNOLDS NUMBER
    De, Ashoke
    Acharya, Sumanta
    COMBUSTION SCIENCE AND TECHNOLOGY, 2009, 181 (10) : 1231 - 1272
  • [10] Development of a modified dynamic flame thickened model for laminar premixed hydrogen/air flames
    Choi, Minjun
    Kim, Yong Jea
    Shin, Dong-hyuk
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, : 3769 - 3790