GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW

被引:0
作者
Kleiner, Bruce [1 ]
Lott, John [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
Collapsing; Ricci flow; geometrization; orbifold; COMPACTNESS PROPERTY; MANIFOLDS; CLASSIFICATION; 3-MANIFOLDS; CURVATURE; SURGERY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A three-dimensional closed orientable orbifold (with no bad suborbifolds) is known to have a geometric decomposition from work of Perelman in the manifold case, along with earlier work of Boileau-Leeb-Porti, Boileau-Maillot-Porti, Boileau-Porti, Cooper-Hodgson-Kerckhoff and Thurston. We give a new, logically independent, unified proof of the geometrization of orbifolds, using Ricci flow. Along the way we develop some tools for the geometry of orbifolds that may be of independent interest.
引用
收藏
页码:101 / 177
页数:77
相关论文
共 58 条
[1]  
Anderson MT, 2002, J REINE ANGEW MATH, V553, P125
[2]  
[Anonymous], 1987, ERGEB MATH GRENZGEB
[3]  
[Anonymous], 2003, PREPRINT
[4]  
[Anonymous], 2008, ZIESCHANG GEDENKSCHR, DOI 10.2140/gtm.2008.14.295
[5]  
[Anonymous], 2007, CAMBRIDGE TRACTS MAT
[6]  
[Anonymous], 1997, Applied Math. Sci.
[7]  
[Anonymous], GRUNDLEHREN MATH WIS
[8]  
[Anonymous], 1972, INTRO COMPACT TRANSF
[9]   Geometrization of 3-dimensional orbifolds [J].
Boileau, M ;
Leeb, B ;
Porti, J .
ANNALS OF MATHEMATICS, 2005, 162 (01) :195-290
[10]  
BOILEAU M, 2001, ASTERISQUE, V272, P208