Fabrication of sub-micron high aspect ratio diamond structures with nanoimprint lithography

被引:9
作者
Karlsson, M. [1 ]
Vartianen, I. [2 ]
Kuittinen, M. [2 ]
Nikolajeff, F. [1 ]
机构
[1] Uppsala Univ, Dept Engn Sci, SE-75121 Uppsala, Sweden
[2] Univ Joensuu, Dept Phys & Math, FIN-80101 Joensuu, Finland
关键词
CVD diamond; Nanoimprint lithography; Inductively coupled plasma etching; Nanostructures; INFRARED SPECTRAL REGION; PHASE MASK CORONAGRAPH; CVD DIAMOND; IMPRINT LITHOGRAPHY; SURFACES; MICROOPTICS;
D O I
10.1016/j.mee.2009.12.085
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Polycrystalline diamond with optical quality has been patterned using nanoimprint lithography. Nanoimprint lithography is a rather new method for fabrication of resist structures with features sizes down to at least 20 nm. The pattern used in this article is a grating with a period of 600 nm and a fill factor of 0.5. Using plasma etching the nanoimprinted grating is etched into a freestanding diamond substrate. We have accomplished the fabrication of 300 nm diamond features with a depth of about 2 mu m, which corresponds to an aspect ratio of 7. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2077 / 2080
页数:4
相关论文
共 26 条
[1]   Imprint lithography with 25-nanometer resolution [J].
Chou, SY ;
Krauss, PR ;
Renstrom, PJ .
SCIENCE, 1996, 272 (5258) :85-87
[2]   Anisotropic dry etching of boron doped single crystal CVD diamond [J].
Enlund, J ;
Isberg, J ;
Karlsson, M ;
Nikolajeff, F ;
Olsson, J ;
Twitchen, DJ .
CARBON, 2005, 43 (09) :1839-1842
[3]   Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays [J].
Gu, E ;
Choi, HW ;
Liu, C ;
Griffin, C ;
Girkin, JM ;
Watson, IM ;
Dawson, MD ;
McConnell, G ;
Gurney, AM .
APPLIED PHYSICS LETTERS, 2004, 84 (15) :2754-2756
[4]   Recent progress in nanoimprint technology and its applications [J].
Guo, LJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (11) :R123-R141
[5]   High aspect pattern fabrication by nano imprint lithography using fine diamond mold [J].
Hirai, Y ;
Yoshida, S ;
Takagi, N ;
Tanaka, Y ;
Yabe, H ;
Sasaki, K ;
Sumitani, H ;
Yamamoto, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2003, 42 (6B) :3863-3866
[6]   Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region [J].
Karlsson, M ;
Nikolajeff, F .
OPTICS EXPRESS, 2003, 11 (05) :502-507
[7]   Transfer of continuous-relief diffractive structures into diamond by use of inductively coupled plasma dry etching [J].
Karlsson, M ;
Hjort, K ;
Nikolajeff, F .
OPTICS LETTERS, 2001, 26 (22) :1752-1754
[8]   From Hydrophilic to Superhydrophobic: Fabrication of Micrometer-Sized Nail-Head-Shaped Pillars in Diamond [J].
Karlsson, Mikael ;
Forsberg, Pontus ;
Nikolajeff, Fredrik .
LANGMUIR, 2010, 26 (02) :889-893
[9]   Diamond nanopatterns fabricated by room-temperature nanoimprinting technology with diamond molds using polysiloxane [J].
Kiyohara, S ;
Fujiwara, M ;
Matsubayashi, F ;
Mori, K .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2006, 17 (03) :199-203
[10]   Fabrication and characterization of diamond micro-optics [J].
Lee, C. L. ;
Choi, H. W. ;
Gu, E. ;
Dawson, M. D. ;
Murphy, H. .
DIAMOND AND RELATED MATERIALS, 2006, 15 (4-8) :725-728