Error propagation framework for diffusion tensor imaging via diffusion tensor representations

被引:30
作者
Koay, Cheng Guan [1 ]
Chang, Lin-Ching [1 ]
Pierpaoli, Carlo [1 ]
Basser, Peter J. [1 ]
机构
[1] NICHHD, Natl Inst Hlth, Bethesda, MD 20892 USA
关键词
cone of uncertainty; covariance structures; diffusion tensor imaging; diffusion tensor representations; error propagation; invariant hessian;
D O I
10.1109/TMI.2007.897415
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An analytical framework of error propagation for diffusion tensor imaging (DTI) is presented. Using this framework, any uncertainty of interest related to the diffusion tensor elements or to the tensor-derived quantities such as eigenvalues, eigenvectors, trace, fractional anisotropy (FA), and relative anisotropy (RA) can be analytically expressed and derived from the noisy diffusion-weighted signals. The proposed framework elucidates the underlying geometric relationship between the variability of a tensor-derived quantity and the variability of the diffusion weighted signals through the nonlinear least squares objective function of DTI. Monte Carlo simulations are carried out to validate and investigate the basic statistical properties of the proposed framework.
引用
收藏
页码:1017 / 1034
页数:18
相关论文
共 59 条